english only
EPFL > STI > IMT > LASA > Publications > Abstract

This paper develops a general policy for learning relevant features of an imitation task. We restrict our study to imitation of manipulative tasks or of gestures. The imitation process is modeled as a hierarchical optimization system, which minimizes the discrepancy between two multi-dimensional datasets. To classify across manipulation strategies, we apply a probabilistic analysis to data in Cartesian and joint spaces. We determine a general metric that optimizes the policy of task reproduction, following strategy determination. The model successfully discovers strategies in six different imitative tasks and controls task reproduction by a full body humanoid robot.

Downloadable files: 0) { $tempFile = $row['pdfFile']; $temp = "pdf"; echo "[$temp] "; } // ps.Z if (strlen($row['psZFile'])>0) { $tempFile = $row['psZFile']; $temp = "ps.Z"; echo "[$temp] "; } // ps.gz if (strlen($row['psgzFile'])>0) { $tempFile = $row['psgzFile']; $temp = "ps.gz"; echo "[$temp] "; } ?>

Last update: 25/08/06