english only
EPFL > STI > IMT > LASA > Publications > Abstract

Humans perform tasks such as bowl mixing b--manually, but programming them on a robot can be challenging specially in tasks that require force control or on-line stiffness modulation. In this paper we first propose a user-friendly setup for demonstrating bi-manual tasks, while collecting complementary information on motion and forces sensed on a robotic arm, as well as the human hand configuration and grasp information. Secondly for learning the task we propose a method for extracting task constraints for each arm and coordination patterns between the arms. We use a statistical encoding of the data based on the extracted constraints and reproduce the task using a Cartesian impedance controller.

Downloadable files: 0) { $tempFile = $row['pdfFile']; $temp = "pdf"; echo "[$temp] "; } // ps.Z if (strlen($row['psZFile'])>0) { $tempFile = $row['psZFile']; $temp = "ps.Z"; echo "[$temp] "; } // ps.gz if (strlen($row['psgzFile'])>0) { $tempFile = $row['psgzFile']; $temp = "ps.gz"; echo "[$temp] "; } ?>

Last update: 25/08/06