english only
EPFL > STI > IMT > LASA > Publications > Abstract



This paper considers the issues of efficiency and autonomy that are required to make reinforcement learning suitable for real-life control tasks. A real-time reinforcement learning algorithm is presented that repeatedly adjusts the control policy with the use of previously collected samples, and autonomously estimates the appropriate step-sizes for the learning updates. The algorithm is based on the actor–critic with experience replay whose step-sizes are determined on-line by an enhanced fixed point algorithm for on-line neural network training. An experimental study with simulated octopus arm and half-cheetah demonstrates the feasibility of the proposed algorithm to solve difficult learning control problems in an autonomous way within reasonably short time.


Downloadable files: 0) { $tempFile = $row['pdfFile']; $temp = "pdf"; echo "[$temp] "; } // ps.Z if (strlen($row['psZFile'])>0) { $tempFile = $row['psZFile']; $temp = "ps.Z"; echo "[$temp] "; } // ps.gz if (strlen($row['psgzFile'])>0) { $tempFile = $row['psgzFile']; $temp = "ps.gz"; echo "[$temp] "; } ?>



Last update: 25/08/06