Foundations and Trends R in
sample

Vol. 1, No 2 (2010) 1{54 n.w
¢ 2010
DOI: 10.1561/2300000012 the essence of knowledge

Tactile Guidance for Policy Adaptation

Brenna D. Argall, Eric L. Sauser and Aude G.
Billard 1!

1 Ecole Polytechnique Fecerale de Lausanne (EPFL)Lausanre1015, Switzer-
land, brennadee.argall@ep .ch

Abstract

Demonstration learning is a powerful and practical technique to de-
velop robot behaviors. Even so, development remains a chalhge and
possible demonstration limitations, for example correspodence issues
between the robot and demonstrator, can degrade policy pedrmance.
This work presents an approach for policy improvement throwgh a tac-
tile interface located on the body of the robot. We introducethe Tactile
Policy Correction (TPC) algorithm, that employs tactile feedback for
the re nement of a demonstrated policy, as well as itsreuse for the
development of other policies. The TPC algorithm is validated on hu-
manoid robot performing grasp positioning tasks. The perfomance of
the demonstrated policy is found to improve with tactile corrections.
Tactile guidance also is shown to enable the development ofglicies
able to successfully execute novel, undemonstrated, task¥Ve further
show that di erent modalities, namely teleoperation and tactile control,
provide information about allowable variability in the targ et behavior
in di erent areas of the state space.
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1

Introduction

The realization of physical movement is fundamental to manyrobotics
applications. Whether operating in industrial and laboratory settings,
or within general society, physically embodied robots typtally are
tasked with the execution of physical actions, thus requirng an al-
gorithm for motion control. Over the years a variety of approaches for
motion control have been proposed, with many resulting in inpressive
robot capabilities. The development of control paradigms kecomes in-
creasingly di cult however as robot and domain complexities grow,
for example with high degree-of-freedom manipulators or iteractions
with compliant objects. Often traditional approaches that de ne ex-
plicit mathematical models of the world, and from these derve rules
for control, struggle to scale with increasing complexity. Moreover, the
development of a control paradigm for any robot platform is @mnfounded
by di culties such as noisy sensors and inaccurate actuatia.

In the face of such challenges, to develop robust control atgithms
typically requires a signi cant measure of expertise and eort from the
developer. The advancement of techniques that reduce the deands
placed on a developer therefore are desirable. We introdude this ar-
ticle an approach to policy development in which correctiors provided
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Fig. 1.1 Our approach of a) task demonstration, followed by tactil e correction of the learned
policy for b) re nement of the demonstrated behavior and c) its reuse in th e development
of other policies. Black solid arrows indicate demonstrated or corrected execu tions, black
dashed arrows generalization executions and white arrows human hand movement.

by a teacher through a tactile interface are used to adapt andmprove a
policy. Our Tactile Policy Correction (TPC) algorithm initially derives

a policy via Learning from Demonstration (LfD) techniques (Fig. 1.1a).
Under LfD, a robot learner generalizes a policy from data reorded dur-
ing the execution of a target behavior by a task expert. Our agproach
then has a human teacher provide policy corrections througha tactile
interface located on the body of the robot. The corrections mdicate
relative adjustments to the robot pose, and thus to the polio/ predic-
tions. The teacher provides corrections in order to accompsh one of
two goals, and how corrections are incorporated into the paty di ers
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for each. The rst goal is to re ne a policy during execution, and thus
to improve its performance based on execution experience {§ 1.1b).
The second goal is to assist in policyreuse by guiding an existing
policy towards accomplishing a di erent task (Fig. 1.1c).

We validate our approach on a humanoid robot performing end-
e ector positioning tasks. We show that policies produced under our
policy derivation technique are exible with respect to variability seen
between the teacher demonstrations, and furthermore that derent
teaching modalities (i.e. task demonstration, tactile corection) pro-
vide information about acceptable execution variability within di er-
ent areas of the state space. The performance of a policy leaed from
demonstration is shown to improve after re nement through tactile
corrections. Successful policyreuse also is validated. Through tactile
guidance, executions with existing policies are iterativey adjusted to-
wards producing new behaviors, with the result of policies ble to exe-
cute alternate, undemonstrated, tasks. Tactile correctims thus enable
the development of new policies, bootstrapped on the reusef @ policy
learned from demonstration.

The remainder of this chapter reports on the related literature
that supports this work. Chapter 2 introduces the TPC algorithm and
presents our implementation in detail. Experimental setup and results
are reported in Chapter 3. A discussion of our approach and mlings
are provided in Chapter 4, followed by concluding remarks.

1.1 Background and Motivation

We begin with a discussion of policy development undeLearning from
Demonstration (LfD) , followed by existing approaches to policy re ne-
ment and reuse within LfD.

1.1.1 Learning from Demonstration

Under LfD, teacher executions of a desired behavior are recded and
a policy is derived from the resultant dataset. LfD has seenccess in a
variety of robotics applications, and has the attractive characteristics of
being an intuitive means for human teacher to robot learner khowledge
transfer, as well as being an accessible policy developmetgichnique for
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those who are not robotics-experts. There are many design disgons to
consider when building an LfD system. These range from who ecutes
the demonstrations and how they are recorded, to the technige used
for policy derivation. Here we overview only those decisioa specic
to our particular system, and refer the reader to Argall et al. (2009)
and Billard et al. (2008) for a full review of robot LfD.

When recording and executing demonstrations the issue oforre-
spondenceis key, where teacher demonstrations do not directly map
to the robot learner due to di erences in sensing or motion (Nehaniv
and Dautenhahn, 2002). Correspondence issues are minimizevhen the
learner records directly from its own sensors while under th control
of the teacher. For example, underteleoperation the teacher remotely
controls the robot platform (e.g. Sweeney and Grupen (2007) while
under kinesthetic control the teacher touches the robot to guide the
motion (e.g. Calinon and Billard (2007)). Teleoperation requires an in-
terface for the direct control of all degrees of freedom on th robot. By
contrast, kinesthetic teaching requires a (passive or actie) responsive-
ness to human touch, for example back-drivable motors or fare-torque
sensing in the joints. Both techniques are employed in our wd.

Many approaches exist within LfD to derive a policy from the
demonstration data (Argall et al., 2009), the most popular o which
either directly approximate the underlying function mapping obser-
vations to actions, or approximate a state transition model and then
derive a policy using techniques such as Reinforcement Leaing (Sut-
ton and Barto, 1998). Our work derives a policy under a variar of
the rst approach, where probabilistic regression techniques are used
to predict a target robot pose based on world state, and a combller
external to the algorithm selects an action able to accompkh this tar-
get pose. Our reason for splitting policy prediction into these two steps
is tied to the mechanism by which the algorithm responds to tactile
feedback (discussed in Sec. 2.1).

1.1.2 Policy Re nement and Reuse

Even with the advantages secured through demonstration, plicy de-
velopment typically is still non-trivial. To have a robot le arn from its
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execution performance, orexperience therefore is a valuable policy im-
provement tool for any development technique. Within the cantext of

LfD speci cally, execution experience can be used to overacoe limita-

tions in the demonstration dataset. One possible limitation is dataset
sparsity, since demonstration from every world state is ingasible in all
but the simplest domains. Other limitations include poor corespon-
dence between the teacher and learner or de ciencies in theeticher,
who may in fact provide suboptimal or ambiguous demonstratons.
Here we consider policyre nement and policy reuse as two techniques
to assist the development process, or equivalently to reduethe strain
on the policy developer.

Within demonstration learning, a variety of approaches inwrporate
information gathered from experience in order tore ne a policy. For ex-
ample, execution experience is used to update reward-deteined state
values (Guenter et al., 2007; Kober and Peters, 2009; Stolland Atke-
son, 2007) and learned state transition models (Abbeel and §l 2005;
Bagnell and Schneider, 2001). Other approaches provide merdemon-
stration data, driven by teacher-initiated demonstration s (Calinon and
Billard, 2007) as well as by learner requests for more data (Bernova
and Veloso, 2008; Grollman and Jenkins, 2007). In this workwe also
provide more data, but using a di erent control mechanism than during
the initial teacher demonstrations; speci cally, teleoperation is used for
the initial demonstration data, and a form of hybrid kinesth etic control
when producing the re nement data.

Policy reuse under LfD occurs most frequently with behavior prim-
itives, or simpler policies that contribute to the execution of a more
complex policy. Hand-coded behavior primitives are used whin tasks
learned from demonstration (Nicolescu and Mataric, 2003),demon-
strated primitives are combined into a new policy by a human Saun-
ders et al., 2006) or automatically by the learning algorithm (Argall,
2009), and demonstrated tasks are decomposed into a librargf primi-
tives (Bentivegna, 2004). The focus of our approach is insid on adapt-
ing an existing policy to accomplish adi erent task, rather than incor-
porating the existing behavior as a subcomponent of a largetask.
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1.1.3 Tactile Corrections

To enable policy re nement and reuse, the approach taken in his work
is to provide corrections on a policy execution. Corrections have the ad-
vantage of providing guidance on a more suitable alternate pediction
for the policy, instead of requiring that this be inferred from an indi-
cation of prediction quality, as state reward does for examfe. Having
directed feedback becomes particularly relevant when guidg a policy
towards accomplishing a novel behavior.

Within LfD policy correction has seen limited attention, and most
examples consider a human teacher selecting the correct pietion
from a discrete set of actions with signi cant time duration (Chernova
and Veloso, 2008; Nicolescu and Mataric, 2003). The target gpication
domain for our work however has policies making continuousalued
predictions at a rapid rate, and both features complicate tre individ-
ual selection of a single alternate prediction to serve as th correction.
To address these challenges, we translate feedback from actide sensor
into continuous-valued modi cations of the current pose orline, as the
robot executes. In contrast to other work with continuous-valued cor-
rections (Argall, 2009), we o er corrective feedback onlire, instead of
post-execution, and through a tactile interface, instead ¢ a high-level
computational language.

We posit that tactile feedback furthers many of the strengths of
demonstration-based learning. Namely, humans already uséouch to
instruct other humans in certain contexts; for example whendemon-
strating a motion, like a tennis swing, that requires a particular position
trajectory. To augment demonstration learning with tactile feedback
therefore is one natural extension to the idea of teaching roots as
humans teach other humans. Demonstration-based policy delopment
also is accessible to those who are not robotics experts, arbssibly
operating robots outside of laboratory or industrial settings. Here the
detection of tactile interactions can be critical for safe obot opera-
tion around humans, and so tactile sensing gains importancen a very
fundamental level. These tactile sensing capabilities milgt then be ad-
ditionally exploited, to transfer knowledge from human to robot for the
purpose of behavior development.
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Within the eld of robot learning (including but not restric ted to
LfD), only a handful of works utilize human touch for the develop-
ment of robot behaviors. For example, tactile feedback is dected in
order to minimize resistance to movement during demonstraibn with
an industrial arm (Grunwald et al., 2003), and to minimize th e support
forces provided by a teacher during humanoid behavior learimg (Mi-
nato et al., 2007). Tactile interactions between a robotic get-surrogate
and elderly patients also are mapped to reward signals, thatare used
within a Reinforcement Learning paradigm to adapt behavior selec-
tion (Wada and Shibata, 2007).

1.2 Our Approach

In summary, the approach presented in this paper employdactile cor-
rections to modify a policy learned through demonstration, for the
purpose of both policy re nement and policy reuse

Our target application domain is low-level motion control for high
degree-of-freedom (DoF) robots. To specify a target behawir for each
joint is complicated, and systems typically are under-confrained, re-
sulting in for example many joint con gurations mapping to a sin-
gle end-e ector pose. The ability to exploit previously learned domain
knowledge for the development of new policy behaviors, i.e. gicy
reuse, thus is advantageous. Performance might su er howear if the
reused policy provides only an approximation to the new targt behav-
ior. Moreover, while the use of demonstration for policy deelopment is
practical for many reasons, it is limited by the interface cantrolling the
demonstration, the quality of which furthermore frequently degrades as
the degrees of freedom to control increase. We aim to overcampolicy
de ciencies through re nement.

To accomplish both re nement and reuse, the policy incorpoates
new behavior examples. Instead of producing the examplesdm teacher
demonstration however (Calinon and Billard, 2007; Chernoa and
Veloso, 2008; Grollman and Jenkins, 2007), which would be wable to
improve upon limitations like a poor demonstration interface, we have
the student respond online to corrections indicated by a teaher and
treat the resultant trajectory as new training data. Provid ing explicit
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corrections has been seldom used within the LfD paradigm (Cérnova
and Veloso, 2008; Nicolescu and Mataric, 2003), especiallwhen the
corrections are continuous-valued and rapidly sampled (Agall, 2009).

We provide corrections through a tactile interface. In addtion to be-
ing a technique that is relatively unaddressed to date withn the robot
learning literature in general (Minato et al., 2007; Wada ard Shibata,
2007), and LfD literature in particular (Grunwald et al., 20 03), we argue
that information transfer through human touch is a natural e xtension
of human demonstration, as an intuitive and e ective mecharism for
the transfer of knowledge from human to robot.



2

The Tactile Policy Correction Algorithm

We introduce Tactile Policy Correction (TPC) as an algorithm for the
re nement and reuse of motion policies, accomplished via tetile feed-
back from a human teacher (Argall et al., 2010). A policy initially
is derived from demonstrations of a task by a teacher. Throuf tac-
tile corrections, the policy then either is re ned to better perform the
demonstrated task, or modi ed to accomplish an undemonstraed task
and thus reused in the development of a new policy. An overvie of
the algorithm ow is provided in Figure 2.1, and pseudo-codefor this
approach in Algorithm 1.

We formally de ne the world to consist of actions a 2 A and obser-
vations z 2 Z of world state, wherea 2 R and z 2 R(™*"), An obser-
vation z consists of two componentsz = (z: ;z.- ), wherez. 2 R™
describes the robot pose, and. - 2 R" describes any other observables
that are of interest to the policy.! We de ne a demonstration to consist
of a sequence oNy observationsf z! ng:dl, recorded during teacher exe-
cution of the task. A policy :Z ! A is derived from the collected set

1Pose information is necessary for the TPC algorithm, and so z+ 6 ;. The presence of
additional observation information however is application-depen dent, and possibly absent
such that z. = = ;
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[ Demonstration J

Policy Derivation

[ Policy Re-derivation

Policy Execution
Tactile Correction
Refine

Fig. 2.1 Flow overview of the Tactile Policy Correction algorithm u  nder the operational
modes of re nement and reuse.

D= fzl gj!\lzl of N datapoints from multiple demonstration executions.

2.1 Algorithm Execution

The rst phase of the TPC algorithm consists of task demonstration
by the teacher, producing datasetD from which the learner derives
an initial policy . The second phase of the algorithm involves learner
execution with the policy , and corrective tactile feedback which is
used to adapt . This execution-correction-adaptation cycle continues
to the satisfaction of the teacher.

A single execution-correction-adaptation cycle is preseed in Al-
gorithm 1. Policy execution (lines 8-10) at timestept consists of two
phases: prediction of a target pose!, and the selection of an action
to accomplish that pose. Pose prediction is accomplished &iregression
techniques, based on state observatioa' * (line 9). Action selection is
accomplished via a robot-speci ¢ controller, and its exection results
in a new robot posez! (line 10).

The human teacher may choose to o er a tactile correction at ay
timestep of the execution. If detected, the robot learner tanslates the
tactile feedback into an incremental shift ' 2 R™ in robot pose, ac-
cording to mapping M (line 12). Note that the form taken by the tactile
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Algorithm 1 Tactile Policy Correction
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Given D

- initialize  © 0

derive policyDerivation (D)
set rene = true _ reuse = true

: while correcting do

initialize ' 0
Policy  execution:
predict 2! regression z'
execute z! controller 2! + t1
if fdetect touchg then
map ! M (touch)
correct  z! controller z! + !
end if
record
if frene gthen
set wt
record D D[ z%;w!
else freuse g
select Ds D
replace z! zi+ ' 821 2 D
end if

1

t tl+t

. end while

. if frene gthen

rederive policyDerivation (D)
return

. else freuse g

0
0

derive
return

policyDerivation (D)

: end if

feedback is platform-speci ¢, depending both on the tactie sensors em-
ployed to detect contact and how the sensor feedback is prossed.

The robot controller is then passed the newadjusted pose, for which

the incremental shift ' is added to the current robot posez! (line 13).
The inuence of this incremental shift is maintained over multiple
timesteps, through an o set parameter ' 2 R™ that maintains a sum
of all adjustments seen during the execution (line 15) and isadded to
the pose prediction at each execution timestep (line 10).

How the pose adjustment is recorded into the policy is handld
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di erently for policy re nement versus policy reuse:

For policy re nement, the corrected execution is treated as
new data for the policy (lines 16-18). Observationz!, and a
weight w' 2 [0; 1] for the new datapoint (details in Sec. 2.4.1),
are recorded into the setD. The tactile correction thus also
is recorded since the current pose, that has responded to the
tactile feedback, is recorded through componeniz! 2 zt.

For policy reuse the indicated correction is applied to exist-
ing points within the dataset (lines 19-21). A subset of poins
Ds D are selected, and the o set ! is applied to their pose
componentsz: (details in Sec. 2.4.2).

In both cases the datasetD is modi ed and, upon completion of the
entire execution, a policy is derived from this set. In the ca&e of re-
nement, the existing policy is replaced with an updated version via
rederivation (line 26). In the case of reuse, a new policy °is derived,
leaving the original policy unchanged (line 29).

Important to note is that the TPC algorithm is generic with re spect
to the techniques used for pose prediction regression ) and action
selection (controller ) during policy execution, as well as to the tech-
nique that translates tactile feedback into a pose adjustmat (mapping
M). The following sections (2.2-2.3) will describe the partcular tech-
niques we employ for the implementation of the TPC algorithm within
this article.

2.2 Policy Execution

This section describes policy execution under our implemdation of
the TPC algorithm. For pose prediction, Gaussian Mixture Regression
is employed (Sec. 2.2.1) along with a modi cation to allow fo execu-
tion variability (details in Sec. 2.5), and for action seledion an inverse
kinematic controller (Sec. 2.2.2).
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2.2.1 Pose Prediction

Target poses are predicted through theGMM-GMR algorithm (Calinon
and Billard, 2007), which rst encodes demonstrations in aGaussian
Mixture Model (GMM) and then predicts a target pose throughGaus-
sian Mixture Regression (GMR) (Cohn et al., 1996). The parameters
of the GMM are trained under a weighted version of theExpectation-
Maximization (EM) algorithm. Full details of the GMM-GMR process
and our weighted EM implementation are provided respectivédy in Ta-
bles 2.1 and 2.2.

Our implementation de nes observation component z: as the
Cartesian position x 2 R2 and orientation q 2 R* (as a quaternion,
kgk = 1) of the end-e ector in a robot-centric reference frame. Thus
z [x;q] 2 R’. We further de ne component z. 2 R as the
time of the recorded observation. The GMM thus models the jont prob-
ability of the temporal and spatial aspects of the demonstrdions. To
make a pose prediction, GMR estimates the conditional expdation of
Z' given z. . ; formally, the expectation E (p(x;qj )), also referred to
as the marginal joint probability p (x;Qq).

The output of GMM-GMR is a mean trajectory and associated co-
variance envelope. Our formulation additionally takes adwantage of the
probabilistic nature of this regression technique to geneate variabil-
ity, and thus exibility, in the predicted trajectory. The d etails of our
approach to deviating from the regression trajectory are povided in
Section 2.5.

2.2.2 Action Selection

Given a target pose2: , action selection is accomplished via an inverse
kinematic controller. Our action spaceA consists of the 7-DoF velocity
vector —2 R’ controlling the joint angles of a robot arm. The manip-
ulator of our implementation (Sec. 3.1) is redundant, as thenumber of
degrees of freedom (7) exceeds the number of constraints (fpsition
and orientation). We therefore compute desired joint anglevelocities —
according to the distance between the target posé' and the current
robot posez! by using a pseudo-inverse method that both avoids joint
limits and is robust to singularities (Baerlocher and Boulic, 2004).
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Table 2.1 Gaussian Mixture Regression (GMR)

The demonstrations within dataset D are modeled probabilistically within
a Gaussian Mixture Model (GMM), that de nes for each point z! 2 D a
probability function given by a mixture of K Gaussian components

p') = pk)p(zljk) = KN 25wk
k=1 k=1

where | is the prior of the k™ component, and N zi; \; x is a Gaus-
sian distribution with mean k and covariance . The optimal number of
components K is determined according to the Bayes Information Criterion
(BIC) . In this work, a datapoint z! consists of two parts: pose z! ( [x;q])
and timestamp z! . ( ), which for notational simplicity we reference here
respectively with ' and . To compute a conditional expectation of ' given
(i.e. z2 given z. ' ) for each component k, we rst de ne

— . — k k
k = koootk s k =
Yk k
and Gaussian Mixture Regression (GMR) then uses
PCKik) N s
1
O k k
N _ 1
"k - "k tik ik tk
to provide the expected distribution of ' given for component k (i.e. z-

given z: ). Finally, by considering all of the components  k and their regression
priors (), a target pose 2 is predicted with mean ~ + and covariance "~
according to

N % N
o= k()™ 5 T = k()2 M
k=1 k=1
() = Pp(k)P(Jk) _ PkN Dok Kk
KLp@)p( i) KINCs w0 6)

2.3 Tactile Corrections

Our interface for providing tactile corrections to the robot learner con-
sists of ve Ergonomic Touchpads located on the manipulator arm.2

2 Touchpad feedback is somewhat limited in comparison to more sophistica ted tactile sen-
sors. In practice corrective repositioning is not always as responsive as the teacher requires,
and so we pause policy execution such that psuedo-code lines 12-13 loop until reposition-
ing is complete. Note that this limitation results from a de ciency in h ardware, not the
algorithm. The validation of TPC with a more sophisticated tactil e sensor is under active
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Table 2.2 Weighted Expectation-Maximization (EM)

Our weighted version of the EM algorithm modi es GMM-GMR parameter es-
timation to include weight w!  0; jN=1 wl > 0. The algorithm loops between

the E-step and M-step until the overall likelihood K_, Ex is maximized:
E-step:
(1) jo (0. ()
pli* = KN 2k
kij - (i) jo (. @)
iKk:1 o N2
i+1 j i+l
€ = e
M-step :
i+1
i _ EQ
k jN:le
N wipl*D S
(v _ = Whg ' Z
k - (i+1)
Ex
N ot i ) Gy T
(i+y _ Q=1 w! Py z k z k
k B (i+1)
Ey

The pads detect contact presence and relative motion, whiclwe map
to a change in end-e ector position and orientation.

Four touchpads, Tp T3, encircle the lower forearm of the robot
arm (near the wrist), and one, Ty, is located on the back of the robot
hand (Fig. 2.2a,b). Touch data from pad Ty; k = 0::4; consists of a 2-
D relative change in pixels u; v{ . The target pose adjustement

' is computed using the forward kinematic function f of the whole
arm, such that ' = f( '+ ' t) 2! Here !is the current joint

con guration, t the timestep for touchpad data capture, 2! the target

pose predicted by the regression model, and' the joint velocity to
accomplish the adjustment, the computation for which is desribed
next. In practice, we decompose the mappingd 7!  into two distinct
parts that operate separately on the wrist and hand, as this semed a
more intuitive mapping for the experimenters providing corrections.
The rst part of the mapping M operates on the rst 5-DoF leading
to the wrist of our 7-DoF manipulator. Sliding the ngers alon g two

development for future work.
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Fig. 2.2 a,b) Schematic of the touch pads controlling the robot  wrist and hand. c,d) Fingers
sliding on opposite pads produces rotational (c) or translational  (d) motions.

opposite touchpads leads either to a translational or rotatbnal motion
command, depending on whether the sliding directions agre®er not
(Fig. 2.2c,d). The velocity z! for the pose correction is computed by
mapping touch data (in R®, 4 pads 2-D data) from pads Tg Tz to
a vector describing the target velocity in Cartesian-space wist coor-
dinates, and then to robot-centric world coordinates through rotation
matrix R:

3

t t
Vo + \')

2
t t
Vi V3
t t t t
= R ub uf ub uj
- R

| uj+  ub
oou) U
t t t t

Constant parameters and | scale respectively the translational
and rotational components of the touch data, to account for d erences
in units (pixels for the tactile feedback, T and % for the velocity
components). The mapping from Cartesian-space velocitg! to joint
velocity _;0::5g for the rst 5-DoFs in the arm then is computed using
inverse kinematics (Baerlocher and Boulic, 2004).

The second part of the mappingM operates on the last 2-DoF of

the manipulator, that control the robot hand. Touch data (in R2 1
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pad 2-D data) from pad T4 thus maps directly to the target joint
velocities, such that g7 = ug; vy .

2.4 Policy Adaptation

Upon the completion of a corrected execution, policy adaptdon is
accomplished by (re)deriving the policy from the feedbackmodi ed
dataset. How the dataset has been modi ed depends on whethethe
policy is being adapted for the purpose of re nement (Sec. 2.1) or
reuse (Sec. 2.4.2). The operational mode for the algorithmbeing either
re nement or reuse, is indicated by the teacher (Alg. 1, line4).

Policy (re)derivation consists of (re)estimating the regression pa-
rameters, again using the weighted EM algorithm (Tbl. 2.2). Though
policy execution under TPC consists both of pose predictionvia re-
gression techniques and action selection by a controller, nder our
implementation the controller is statically de ned. Policy derivation
therefore requires regression parameter estimation only.

2.4.1 Adaptation for Policy Re nement

When tactile corrections are provided for the purpose of paty re ne-
ment, new datapoints are generated by the execution-corrdmn pro-
cess. A weight is associated with each point in the seD, and therefore
must be determined for any new datapoints as well.

Datapoint weights are assigned based on the covariance eriepe of
the original GMM derived from the demonstration data. In par ticular,
we de ne weight functions for corrected executionswc (t) and demon-
strated executionswp (t) as

t

max =Max ™t 2 (21)

|
=

we(t) =

Wp (1)

wherej"! jis the determinant of the GMR prediction covariance ma-
trix at time t. We then assign weightw! for datapoint z! with functions
wp (t) or we(t), based on whetherz! was part of a demonstrated or
corrected execution (respectively) and the time ( z!:) of the ob-
servation recording.

2 max

1 we(t) (2.2)
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=== Original regresion covaiance
X —— Original regresionmean
Original demonsations

Refinement

We
________ A~
........ Wp |S|
S’max
1 0
We. t
""""""" Vo d
............... t
0
=== Original regresion covaiance === Original regression covaance
X Correced execlibns X Adaptel demonstrabns for reuse
——— “Refined” regresson mean ——— “Reused” regres®n mean
= “Refined" regresson covariance C— “Reused” regresi®n covariance

Fig. 2.3 lllustration of policy adaptation under re nement and reuse. Top center: Original
demonstration data, with associated regression mean and covariance envelop e. Re nement
panel: Our weight function formulation (top), that is a function of covariance envelope size

( Aj%). lllustration of an example weight function (middle) and how wit h it the covariance
envelope narrows more dramatically as time progresses and wc wp (bottom). Reuse
panel: lllustration of the accumulation of correction o sets during a  n execution (top), and
how this shifts the points in the dataset and thus the regression signa | (bottom).

With this weight formulation, we assume teacher demonstratons
provide an accurate portrayal of the variability pro le of t he task. That
is, in areas of low covariance, little variability is allowed (or equiva-
lently, high precision is required) in the target task behavor, while in
areas of high covariance, much variability in the resulting behavior is
acceptable, even expected. With our weight formulation, in aeas of
low covariance ("} j% max), corrected datapoints are given a high
weight, and the regression signal accordingly shifts strong. By con-
trast, in areas of high covariance [t j% I max), it is not unexpected
that executions might di er from the demonstrated behavior, and so
demonstrated and corrected execution points are given appximately
equal weight. In Figure 2.3 (Re nement panel) this weight formulation
is shown (top), as well as an example weight function (middl and the
resulting adapted regression signal (bottom).
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2.4.2 Adaptation for Policy Reuse

When tactile corrections are provided for the purpose of pdty reuse,
existing points within the set D are modi ed. In particular, a subset of
points Dg D are selected, and the pose adjustment is applied to the
pose component of these pointsZ: 2 Dg). Note that an entirely new
policy is instantiated when reuse is employed, and it is not gpected
after reuse that the new policy be able to perform the task of he
original policy from which it was adapted.

The subsetDg is selected according to nearness, within the input
space of the regression function, between the execution pdithat re-
ceived the tactile correction and the points within dataset D. In our
work the input space of the regression function is executiotime. Since
our demonstrations are resampled to have an equal number ofxe-
cution points, the metric for nearnessis straightforward: for a given
modi ed execution point z!, we build Ds by simply taking all points
in D that occurred at this same time in their respective demonstation
trajectories, such that Ds = fz'jz!. = z!.;8z' 2 Dg. We then apply
to the pose components of these points the o set .

With this nearness metric however, caution must be exercistwhen
changing points within the dataset. In particular, our regression formu-
lation (details in the following section, 2.5) allows for deviations from
srictly following the regression signal - that is, the mean tajectory -
of GMR. Thus at the same point in time with respect to the execu
tion sequence, dierent executions might be in distinct areas of the
state space for which the target policy behavior di ers. Caution must
be exercised since a correction which is appropriate for oncation
might not be appropriate for the other. Consider for examplea policy
for object grasping, where at the time just prior to grasping a di erent
hand orientation is required depending on the direction of @proach.
A correction that ips the robot hand by 90 degrees thus might be
appropriate if the object was approached from the top (causig the
object to be grasped from the side), but not if approached fron the
side (causing an attempted grasp from below, and a collisionvith the
object's supporting surface).

We address this issue by restricting the operational mode afeuse to
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correcting only executions that follow exactly the regres®n signal. This

restriction ensures that an execution point receiving corections lies at
the regression mean of the set of datapoints with similar timstamps.
Any provided corrections thus produce o sets that are apprgoriate for

this mean, and are not particular to the extremes of these paits. Note

that this restriction is in place only for reuse, and is lifted for executions
that are a straightforward reproduction or corrected for the purpose of
re nement.

In conclusion, the idea behind the TPC formulation for reuse &
to take one large step in the direction of the new policy behaior, by
shifting entire subsets of the existing dataset. By compaion, if the
modi ed execution was instead added to the existing dataset as in
re nement, the new data would simply be averaged with the exsting
data during policy derivation. While the regression trajectory would
indeed be pulled in the direction of the new data, and thus thenew
target behavior, the e ect would be more iterative and less damatic
than one-shot reuse. In Figure 2.3 Reuse panel) an illustration is pro-
vided of the correction o sets accumulated throughout an execution
(top), and the resulting shift in regression signal (bottom).

2.5 Deviating from the Regression Signal

We conclude this chapter with a description of our formulation that
allows for exibility in the trajectory predicted by GMM-GM R.

2.5.1 Formulation

Under GMR, a target pose?! is predicted with mean ! and covariance
~ (Fig. 2.4). We modify the pose prediction by

pl = Al 4t (2.3)

and thus apply to the regression mean oset ' 2 R™

t i t
t —_ If max
= . 2.4
t_ma  otherwise (2.4)

1

t=gzt Al otz (M) E otk (2.5)
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where ! is de ned by the dierence ( ') between the current robot

pose and regression mean, and whether the magnitude ) of this

di erence (inversely scaled by standard deviation ( B )%) exceeds a
threshold ( max)-

Fig. 2.4 lllustration of our o set formulation for GMR that allo ws for deviations from the
regression mean (bold vs: dashed lines), showing adaptability with respect starting position.

The amount of allowable deviation is dictated in terms of an acept-
able number ( nax) Of standard deviations from the regression mean,
where nax 0 is a constant parameter set by hand (in our empirical
validations, max = 2). For execution points (including starting posi-
tions) within this threshold (i.e. within a2« standard deviations of the
regression mearm! ), the execution proceeds with its current pose (i.e.
2t = '+ t = z!). Execution points outside of this threshold are
rst projected (e.g. Fig. 2.4, z: to 2 ) to the envelope (shaded region)
de ned by nax Standard deviations around the regression mean. The
result is more exible learner executions, that take advantage of the
variability present within the teacher demonstrations.
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2.5.2 More Flexible Executions

One gain of this regression formulation is allowing the leamer exe-
cution to take a more direct path to the goal, that perhaps devates
from the regression trajectory but is still within the bound s of what
was demonstrated. Figure 2.4 illustrates that in the absene of o set

, the execution trajectory (dashed line) follows the regresion mean
(white trajectory), regardless of whether a more appropride path (e.g.
a shorter path, such as demonstrationd ) is contained within the set
of demonstrations. With the o set, however, the learner exeution is
free to follow a more direct path to the goal (bold line), providing this
is within  nax Sstandard deviations of the regression mean.

The executions in Figure 2.5 con rm this behavior with real robot
data. Here the validation task consisted of positioning the7-DoF end-
e ector of the iCub humanoid robot to grasp a cylindrical object.®
Demonstrations were provided from multiple starting end-eector po-
sitions with respect to the object. To explore policy exibility with
respect to acceptable variability in task execution, threepolicies were
developed for comparison:

: Derived from the demonstration set using standard GMR.

: Derived from the demonstration set using our modi ed verson
of GMR with o set

.« . Produced from the tactile correction of  using TPC.

Table 2.3 provides the lengths of the execution trajectoris (as frac-
tions of the distance traveled by policy ) from 4 starting positions
(s1::84) for all policies. Indeed, from all positions the incorporaion of
o set allows for execution paths that approach the target positin
more directly, shown by shorter trajectory lengths ( vs. , . vs. ).
The most dramatic improvement is seen with starting point s4, whose
position is such that the execution must travel explicitly away from the
target position ( ) to reach the start of the regression trajectory (s;).
In this case overt backtracking is the result if o set  is not employed.

3 Full details of the iCub robot and this experimental domain will b e provided in Section 3.1.
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Fig. 2.5 a) Demonstration executions to target position . b) Executions from starting
positions s;3::s4, performed by policy . Note that executions rst visit the start ( s;) of the
regression trajectory. ¢) Executions from starting positions  s;::s4, performed by policy ,
which proceed directly to the target position.

Unnecessary backtracking in the absence of is a consequence of
time-dependence in the system. With our o set, the pose preattions
are no longer restricted to follow exactly the regression tajectory, but
are still constrained by the demonstrations in the set. Naméy, if the
starting position of the current execution is outside of the initial co-
variance envelope, and thus su ciently dissimilar to any of the demon-
stration start positions, the execution will rst snap (pos sibly back-
tracking) to the closest point on the edge of this initial envelope; by
contrast, without o set  the execution would snap all the way to the
regression mean. The o set formulation therefore tackles to a certain
degree some of the negative consequences of time-dependgrtbough
time-dependence is still present and at times a drawback.

Table 2.3 Execution Length (from multiple starting positions, as a fraction of the exec ution
length of policy )
Starting Position || "
S1 1 069 0:66
S2 1 0:88 0:88
S3 1 064 067
Sa 1 035 0:27
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Empirical Validation

This chapter provides empirical validation of the TPC algorithm. Our
experimental domain involves positioning the end-e ectoss of a high-
DoF humanoid, for interactions with and between a variety of objects.
The performance of policies re ned under TPC is reported, aml suc-
cessful policy reuse also is con rmed. We furthermore examie shifts
in the regression covariance envelope, which as a result cadtile feed-
back may contract or expand within di erent dimensions to increase
respectively execution precision or exibility. A comparison addition-
ally is provided between policies developed under TPC, andHose that
receive more teleoperation demonstrations in lieu of tacte corrections.
We have implemented the TPC algorithm on a small 53-DoF hu-
manoid, the iCub (Tsagarakis et al., 2007). Demonstration § performed
via teleoperation by a human teacher, which is non-trivial & simulta-
neous control of 7 degrees of freedom is required to teleome a single
arm, 14 to teleoperate both arms simultaneously. Teleoperion is ac-
complished through a joint recording system and a mapping tlat allows
the human to directly control the motion of the robot arm by mo v-
ing his own arm, during which the robot records from its own s@&sors
(Fig. 3.1). Sensing units from the commercialXSens joint recording

24
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Fig. 3.1 Teleoperation of the iCub robot by mapping the human joi  nt angles, and thus the
human arm movement, to the robot arm.

system are placed on the human's upper and lower arm, and backf
the hand. Each unit contains an accelerometer, gyroscope ahinertial
sensing unit, and provides orientation information that we translate
into human joint angles. We then map the human joint angles tothe
joint angles of the robot arm, thus accomplishing remote cotrol.

In each of the following experiments, policy development cosists
initially of task demonstration, followed by tactile corre ctions. Two hu-
man teachers provide demonstrations and corrections, neiter of whom
are robotics novices.

3.1 Experimental Setup 1: Grasp Positioning

For our rst set of validation tasks, the robot learns to position the end-
e ector(s) of its 7-DoF arm(s) for uni-manual and bi-manual grasping
of di erent objects. Closing the hand(s) for grasping is hardled by a
static controller.® Multiple policies are developed to accomplish vari-
ous end-e ector positioning behaviors, each of which has ta learner
position one or both of its end-e ectors to grasp an object Icated at
a particular position within the robot-centric coordinate frame.?

1The focus of the task objective is on end-e ector positioning, rather th  an the grasp itself,
since the iCub hand has no force sensors or tactile feedback in its hands. Note also that
if controlling the hand is a part of the demonstrations, then the jo int space is 15-DoF for
each arm and a more complex teleoperation system is required.

2The location of an object is xed with respect to the robot for each develop ed policy.
This construction easily extends to be exible with respect to object positio  n however,
by switching to an object-oriented coordinate frame. As our goal was to validate policy
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3.1.1 Evaluation of Policy Performance

The performance of a policy is evaluated according to whethethe
end-e ector is positioned such that the robot is able to grapg the ob-
ject. Positions within the nal covariance envelope of eachpolicy are
tested for success in grasping, and are selected both systatitally and
randomly; in particular, positions are systematically sekcted along the
boundaries of the covariance envelope, and sampled randoynlvithin
its bounds. The same set of position$ are employed across all policies,
scaled by the respective dimensions of the covariance enegle for each.

In particular, the set S contains the following 21 positions: the nal
position of the regression trajectory (1), the extremums ofthe nal
covariance envelope (14, 2 extremums 7 pose dimensions) and ran-
dom positions within the covariance envelope (6). The extrenum po-
sitions are determined by setting a single dimension to itsdrgest and
smallest values within the covariance envelope, and settim all other
dimensions to their regression mean values (i.e. the regrsidn mean

the covariance value of the dimension under consideration)\We ex-
amine these extremum positions by looking separately at thesubset
of positions corresponding to end-e ector position §,  S;jSpj = 6)
and end-e ector orientation (S,  S;jSoj = 8). The reason for taking
particular interest in performance at the covariance envebpe bound-
aries arises from our exible regression formulation: witho set , the
regression signal is not restricted to follow only the regresion mean,
and produces predictions within or at the boundaries of the ovariance
envelope. Furthermore, the performance within the envelop (i.e. on
the mean and random positions), tends to be quite good and varlittle
across policies.

3.1.2 Analysis of the Covariance Envelope

When the TPC algorithm is in re nement mode, tactile corrections
produce new data, which might constrict or expand the covarance en-
velope of the regression signal. When the envelope is congtied, the

re nement and reuse under TPC, we chose a simpler task representation that wa s not
complicated by the sensing requirements to detect object position.
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resulting motion of the robot becomes more constrained andassuming
a good regression trajectory, thus also more precise. Wherheé enve-
lope is expanded, the motion becomes less constrained anduth more
exible. Either might be desirable or undesirable within di erent di-
mensions for a given task.

We will examine changes in covariance by looking at the normig&zed
standard deviation of the full covariance matrix, as well asthe sub-
matrices corresponding to end-e ector position and orienation. More
speci cally, the full covariance “is composed of four submatrices

" N N #
N (3.1)
xq q

where subscriptsx and q refer respectively to the position and ori-
entation components of the robot pose. The normalized covaance is
computed asj jﬁ (wherej | is the determinant of the N N matrix
), and is reported for a given full covariance matrix “( N =7) and its
position and orientation submatrices "x; "¢ (N =3;4).

The position dimensions of the covariance envelope will bexamined
in further detail, by looking at the change in envelope shapeat the end
of the motion trajectory. In particular, we consider to what extent
the envelope shape deviates from a sphere, which correspatb equal
variability in all three position dimensiolgs. We measure this deviation
according ellipsoid leve| dened as ;= , zwhere 2 3 Zare
the eigenvalues of”. Intuitively, this metric compares the length of
the ellipsoid's longest axis ( 1) to the bounding boig (more speci cally,
the square roof of the area of the bounding box, » 3) of the cross
section perpendicular to this axis.

3.2 Re nement

We begin with an examination of policy re nement. Policies for four
end-e ector positioning behaviors are developed by rst denonstrating
the behavior, and then providing tactile corrections.

3 The square root corrects for comparing a length ( 1)toanarea ( 2 3).
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3.2.1 Policy Development and Evaluation

We examine the e ects of re nement by contrasting a policy before and
after tactile correction, and comparing it also to a policy developed
using teleoperation demonstration exclusively. The objet behaviors
considered include positioning (e.g. Fig. 3.2) the right ed-e ector for
grasping a ball ( p) and a cylinder ( ¢), and positioning both the left
and right end-e ectors for grasping a tray ( ; |).% For each object
behavior, three policies are derived (Tbl. 3.1): the rst from a set of
4 demonstrations, the second from that demonstration set pis tactile
corrections, and the third from that demonstration set plus 4 additional
demonstrations.

Table 3.1 Notational summary for the policies developed to evaluate re nement.

Ball Cylinder Tray, right Tray, left

4 Demos pd 4d Ad fd

0 0 0 0

4 Demos + Re ne pd 4d Ad fd
4 Demos + 4 Demos || & 8a bd Bd

3.2.2 Performance Improvement

The performance of all policies was found to improve followig tactile
re nement (Thl. 3.2, i“d VS. i“do;i = fb;c;l;rg). Averaged over all
policy behaviors, performance improved from a success ratef 81:0
8:7% for the policies derived from 4 demonstrations, to 92 6:2%
after those policies were provided with tactile correctiors.

Tactile re nement furthermore was found to be more e ective at im-
proving policy performance than providing more teleoperaton demon-
strations (Thl. 3.2, #°vs. 8:j = fb:c;l;rg). While performance on

| |
average improved following tactile re nement, by contrast it declined

4 Note that the demonstrations of tray grasping are performed separat ely for the right and
left arms. While simultaneous operation is feasible technically with  our teleoperation sys-
tem, it is di cult for the teacher to control both arms simultaneously and as a consequence
demonstration quality is lower than it is with separate demonstrati  ons.
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Table 3.2 Performance results, comparing tactile re nement to more teleo  peration.

Mean (%) Extremums (%) Random (%) Full set S (%)
Position Sp  Orientation So
B 100 333 75 100 714
4d® 100 833 100 100 95:2
8d 100 333 75 8333 66.7
d 100 50 100 100 85:7
4d° 100 100 100 100 100
8d 100 50 875 66.67 714
a0 100 50 75 100 76:2
4d® 100 667 875 100 85.7
&d 100 50 875 8333 76:2
il 100 833 87:5 100 90:5
4d® 100 833 875 100 905
&d 100 667 875 100 857

with more teleoperation demonstrations, from 810 8:7%to 750 8:1%
(average over all policy behaviors). The likely cause is greth in covari-

ance (discussed in the following section) which, paired wit the decrease
in performance, implies that these demonstrations introdwed undesir-

able variability into the dataset. In general, providing more demonstra-

tions with our teleoperation system increased the covariane envelope,
as very precise executions were di cult to achieve. When thelearner
has limited information about the task behavior in many areas of the
execution space, providing more demonstrations typicallyresulted in

an increase in policy performance, despite the growth in cariance.

However, once the policy was su ciently informed, especialy in areas
where precise positioning was required, then the lack of psion in the

teleoperation interface, as well as the noise in human exetion, was

more likely to introduce unwanted variability into the poli cy. Changes
in the covariance envelope, and its e ect on policy performace, are
discussed next.

3.2.3 Adapting the Covariance Envelope

Table 3.3 compares the changes in covariance following reement ver-
sus more teleoperation demonstration, by reporting the nomalized
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standard deviations matrices. In particular, tactile re n ement reduced
the standard deviation of the regression signal (4@ vs. 49), where
by contrast providing more demonstrations consistently ircreased the
standard deviation ( 8 vs. 49). Given that tactile re nement also im-
proved policy performance, while more demonstrations negavely im-
pacted performance (Tbl. 3.2), we conclude that re nementremoved
while more demonstrationintroduced, unwanted variability into the pol-
icy behavior.

Variability with respect to the starting position was present in the
original demonstration sets. The cylinder and tray tasks havever also
allowed for some variability in the target position, as the hand may
be positioned for grasping at various locations along the gnciple axis
of the cylinder or edge of the tray. Variability in target position was
minimally present in the demonstration set, since navigatirg the end-
e ector to various grasp locations on the cylinder requireda high level
of precision that was di cult to achieve with the mechanism u sed for
teleoperation. Through tactile corrections, however, theteacher was
able to convey variability with respect to target position.

Stated more generally, it can be the case that in areas requing
high precision (e.g. at the target position) a broadened caoariance is
desirable along certain dimensions (e.g. along the lengthfdahe cylin-
der), while a narrowed covariance is desirable along otherée.g. loca-
tion of the cylinder). Our teleoperation system was unable b isolate
its operation to a single dimension in such high-precision eeas, and
so broadened the covariance within all dimensions. By conast, the
tactile correction interface was sensitive enough to operta within a
single dimension in high-precision areas, and so broadenghle covari-

Table 3.3 Normalized standard deviation, average over all policy beh aviors. The full co-
variance over all dimensions is shown, as well as the covariance over th ose corresponding to
position only and orientation only.

Standard Deviation ( 10 2)
Full *  Position only "y  Orientation only "4
1.4 03 1.0 03 25 08
1.0 04 09 02 15 07
20 01 15 02 33 07

ad
4d°
8d
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Fig. 3.2 Sequence of tasks learned from policy reuse. Left to right, top to  bottom: Demon-
stration of ball-grasping via teleoperation ( p); reuse of ball-grasping to grasp a cylinder
( ¢); reuse of cylinder-grasping to grasp a tray with the right hand ( r); mirroring of
right-handed tray-grasping to grasp a tray with the left hand ( 1)

ance within only select dimensions.

An increase in exibility within a single dimension is re ec ted in
an increase in ellipsoid level. This was seen following taidé corrections
(83:0 1L:1vs.21 04, forpolicies i“do VS. i“d, average oveli = fc;r;1g).
Providing more teleoperation demonstrations however was ot able to
increase the ellipsoid level (19 0:5 vs. 21  0:4, for policies £ vs.

i“d, average overi = fc;r;1g), though the teacher was in fact making
an e ort to indicate exibility when appropriate.

3.3 Reuse: E cient Sequence

We next examine policy reuse, by learning policies for the for object
behaviors of the previous section as @&equencethat begins with the
demonstration of a single policy and continues with succe$g rounds
of policy reuse (Fig. 3.2).
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3.3.1 Policy Development and Evaluation

The sequential policy development occurs as follows. An itial policy
behavior is demonstrated via teleoperation by a human teachr, and the
resulting policy is re ned using tactile corrections. Beginning with the
demonstrated policy, successive policy behaviors then at@ootstrapped
from existing policies, by rst employing tactile feedback for reuse in
order to generate a new behavior, and following this with re nement
to improve the behavior.

The demonstrated policy consists of positioning the robot ad-
e ector to grasp the ball. A policy able to grasp the cylinder is then
bootstrapped from the ball policy, which requires a new ende ector
orientation. A bimanual behavior to grasp a tray is developeal next, in
two phases. First a policy for the right arm is bootstrapped fom the
cylinder policy, which requires a shift in end-e ector orientation and
position. The learned right-arm policy is then mirrored on the left arm.
In summary, eight policies are developed for evaluation (Fg. 3.2):

b; g : Ball grasping, derived from 4 teleoperation demonstratims
( b) and then re ned with tactile feedback ( D).

oo

: Cylinder grasping, bootstrapped from the reuse () of ball
policy 2and then re ned ( 9.

cy

. Tray grasping for the right arm, bootstrapped from the reuse
( ) of cylinder policy 2 and then re ned ( 9).

r

=]

=]

. Tray grasping for the left arm, bootstrapped from mirrorin g
(1) the right arm tray policy 2, and then re ned ( 9.

We refer to a single instance of learning this complete sequee of
tasks as alearning trial . Three learning trials were performed for our
empirical validations.

3.3.2 Successful Policy Reuse

Prior to receiving tactile feedback for the purpose of onedsot reuse,
none of the original policies were able to perform the adapte tasks.
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That is, the success rate of the ball policy 8 attempting to grasp
the cylinder was 0%, as was the success rate of the cylinder iy
attempting to grasp the tray.

Following however tactile feedback and policy derivation &cording
to the TPC update rule for reuse, the success rate of the adaged
policies improved respectively from 0% to 8571 10:35% and from
0% to 8889 8:05% (Thl. 3.4, = ). Successful policy reuse thus was
enabled through tactile feedback. Furthermore, the tactile corrections
provided for re nement, following reuse, again resulted inimproved
policy performance. Note also that for the tray behavior, miroring the
right-tray policy on the left hand has a higher success rate han reusing
the cylinder policy, which is unsurprising given similarity between the
left and right tray behaviors.

Table 3.4 Performance results of sequential reuse, average of 3 learning t rials.

Mean (%) Extremums (%) Random (%) | Full set S (%)
Position S, Orientation Sq
b 100 O 389 96 708 T2 889 193 683 55
0 100 O 889 96 100 O 100 O 96:8 2:8
c 100 O 722 96 833 144 100 O 857 48
9 100 O 889 9:6 926 72 100 O 937 28
r 100 O 667 O 958 T7:2 100 O 889 28
0 100 O 889 96 958 7:2 100 O 952 4:8
| 100 O 833 167 917 144 100 O 921 99
P 100 O 778 9:6 100 O 100 O 937 28

3.3.3 Adapting the Covariance Envelope

The amount of allowable variability in a policy behavior di e red be-
tween the tasks, as well as the execution dimensions. For erle,
compared to the ball policy from which it is bootstrapped, the cylinder
policy allowed for increased variability along the principal axis of the
cylinder, corresponding to the position of the handon the cylinder.
End-e ector orientation was more constrained, however, asthe palm
of the hand must roughly align with the cylinder axis.

To realize the di erences in acceptable variability between reused
policies, during re nement tactile corrections were emplyed to indi-
cate areas of desirable exibility. Table 3.5 presents the Hipsoid level
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of the covariance envelope at the nal position, before and #er tactile
re nement. The comparatively low ellipsoid level of the ball policies
re ects the absence of a exible position dimension. That tectile re-
nement was able to indicate exibility along the axis of the cylinder
is shown by an increase in ellipsoid level (5 0:4! 29 0:5).

In Figure 3.3 we see that the variability learned for cylinder-grasping
(a, front and side views) then was successfully preserved bygne-shot
reuse when adapted for tray-grasping (b, bottom and side vies). In
particular, the elongated envelope dimension now lies alap the edge
of the tray, corresponding to exibility with respect to the position
of the hand on the tray. The preservation of the covariance ewelope
shape, paired with the adaptation of its placement in spacejs a direct
result of the TPC mechanism for policy reuse. The preservatn of
desired variability is further con rmed by the high ellipso id level of the
cylinder being maintained in the adaptation from cylinder-grasping to
tray-grasping (Tbl. 3.5, cylinder, after re nement ! tray-right, before
re nement).

Tactile re nement also might produce data that causes the reyres-
sion envelope to narrow, in order to re ect portions of the target mo-
tion for which more precision is required. Figure 3.4 preseis example
trajectories for each task behavior following reuse Before re nement)
and then re nement (After re nement ), where the covariance envelopes
(or rather, the dimensions within Cartesian space, i.e."y) of the nal
end-e ector positions are shown as mesh ellipses. Images tife robot
at di erent phases of performing each task, and from variousstarting
positions, are also provided. For all behaviors, re nementdid indeed re-
duce variability, with one notable exception: re nement of the cylinder-

Table 3.5 Changes in covariance envelope (within the position dimen sions, " x) with re ne-
ment, average of 3 learning trials.

Ellipsoid Level
Before renement ( ;)  After re nement ( IO)
ball 21 03 16 02
cylinder 1:6 04 29 05
tray, right 34 07 44 1.2

tray, left 44 12 48 1.1



3.3. Reuse: E cient Sequence 35

side view side view
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S e

. bottom view _ bottom view
front view front view

Fig. 3.3 Changes in covariance envelope (within the position dimensi ons, ") with reuse.
Cylinder-grasping (a) is adapted via reuse for tray-grasping (b).  Callouts for each 3-D plot
show a single dimension projected onto the other two dimensions. Example reproduction
trajectories shown in red.

grasping policy, for which increased variance along the cyider axis was
permitted and desired.

3.3.4 Comparison to Demonstration

Polices developed under the TPC technique of reuse perfornimsilarly
to policies developed via demonstration, and so the absenad demon-
stration data for a specic behavior does not appear to negaiely
impact policy performance. The trend continues following e nement,
with the TPC reuse policies producing similar or superior p&formance
to those that received more teleoperation demonstrations.

In particular, for the cylinder policy no di erence is seen between
the two approaches overall (Tbl. 3.4 . vs. Thl. 3.2 §d, Full set S).
We do however note that reuse outperforms teleoperation onhe po-
sition extremums (Sp), while the inverse is true for the orientation
extremums (Sg); the probable explanation is that hand orientation is
more constrainted for the cylinder than the ball, since the hand must
align with the cylinder's principle axis while for the ball n o such align-
ment is required. For a policy built from the reuse of the ball behavior,
this constraint therefore must be indicated through re nement. For
the right-hand tray-grasping policy, reuse outperforms tdeoperation in
all measures (Tbl. 3.4 , vs. Thl. 3.2 #9). In this case the behaviors
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Before refinement After refinement

N\
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Fig. 3.4 Changes in covariance envelope (within the position dimensi ons, ") with re ne-
ment, for the ball (a), cylinder (b), tray-right (c) and tray-left (d) end-e ector positioning
policies. Example reproduction trajectories shown in red.

were particularly well-suited for adaptation via reuse. More speci cally,
cylinder-grasping is exible with respect to where the handis placed
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on the cylinder, while tray-grasping allows for variability in the posi-
tion of the hand along the edge of the tray. The adapted policyin this

case bene ts from the preservation of variability (of covarance enve-
lope shape), that is adapted (shifted in position and orienation) to be

appropriate for tray grasping.

3.4 Reuse: Ine cient Sequence

The previous section noted that the sequence chosen for poli devel-
opment was particularly well-suited for reuse. In particular, a minimal
amount of covariance adaptation via re nement was required in the se-
quence of ball cylinder! tray,right! tray,left the elongated covariance
envelope was learned once for cylinder-grasping, and therr@served for
tray-grasping with the right and left hands. To examine the dependence
of policy reuse on the selection of a suitable learning sequoee, in this
experiment policy development follows a sequence which wexgect will
be less e cient in the context of reuse: tray,right! ball! cylinder.

3.4.1 Policy Development and Evaluation

In detail, the adaptation sequence consists of demonstratéend-e ector
positioning to grasp a tray with the right hand, which is ren ed and
then reused to position for ball grasping. The re ned ball-gasping pol-
icy is then reused to position for cylinder-grasping, with re nement
following. We expect this sequence to be ine cient with respect to
covariance adaptation: in particular, that the elongated covariance en-
velope learned for tray-grasping will be unlearned for balgrasping,
and then relearned for cylinder-grasping. In summary, six plicies are
developed for evaluation:

;O : Tray grasping for the right arm, derived from 4 teleoperation

demonstrations ( ;) and then re ned with tactile feedback ( ?).

: Ball grasping, bootstrapped from the reuse () of tray-right
policy 2 and then re ned ( D.

bs

T O

oo

ci ¢ . Cylinder grasping, bootstrapped from the reuse () of ball
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policy 2 and then re ned ( 9.

We again refer to a single instance of learning this completsequence
of tasks as alearning trial, and performed three learning trials for our
empirical validations. Each of the six policies for each leming trial were

evaluated on the 21 test positions inS, as de ned in Section 3.1.1. A
di erent human teacher from that of the previous sequence futhermore

was employed to provide tactile corrections for learning tle current

sequence.

3.4.2 Policy Performance

The ability to learn successful policies for each behaviorjn spite of
the presumably suboptimal sequencing, was con rmed. Perfonance
details are provided in Table 3.6.

Similar performance was seen from the tray behavior, which he
was demonstrated but in the e cient sequence resulted from nulti-
ple rounds of reuse, again suggesting that policies do not sr as a
result of having no explicit demonstrations of their target behavior.
The opposite is suggested by the ball behavior however, whicprior
to re nement did have better performance when demonstratedversus
reused. We conclude therefore that sequencing order can iedd play a
role in the success of reused policies. These results suggesparticu-
lar that a sequencing for which subsequent policies requirbroadening
the covariance, rather than restricting it, is more sound. A de cit in
performance however may be made up at least in part with re nng

Table 3.6 Performance results of sequential reuse, ine cient sequence, average o f 3 learning
trials.

Mean (%) Extremums (%) Random (%) | Full set S (%)
Position Sp Orientation S,

100 O 611 255 792 T2 100 O 91.0 83

100 O 778 96 100 O 100 O 937 38

66:7 578 500 167 542 315 667 333 571 265
100 O 8333 167 833 144 889 192 857 143
100 O 833 0 100 O 100 O 952 0
100 O 917 118 100 O 100 O 97.6 34

coo |ltoo |Tmo~
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corrections, and the ball behavior in this sequence saw a lger relative
improvement in performance following re nement than the ine cient
sequence (5% vs. 417% improvement).

The initial performance of the reused ball policy to accompish the
cylinder behavior was surprisingly high (952 0%); higher than in the
e cient sequence (857 4:8%), in which the ball policy also was reused
for the cylinder behavior. One possible explanation is simly that di er-
ent demonstration and correction styles produce di erent policies, since
a di erent human teacher was employed for the development ofeach
sequence. A further possibility, supported by the results 6 the next
section, is that in this sequence the covariance envelope waalready
appropriately constrained following reuse with respect tothe location
of the cylinder, and so policy performance did not su er as meh from
imprecise positioning.

3.4.3 Adapting the Covariance Envelope

The evolution of ellipsoid levels (Thl. 3.7) was less cleard interpret
overall than that of the e cient sequence. The ellipsoid level increased
with re nement for the tray behavior, which was expected given the
results and discussion of Section 3.3.3. The absence of clggnin the
cylinder policy similarly was not surprising given that the initial ellip-
soid level is already quite high. That the ellipsoid level ircreased for
the ball behavior however, and furthermore that this added exibility
was paired not with a decrease, but rather an increase, in péormance
success, was not expected.

In the previous sections we proposed that, unlike the cylinér and
tray policies, the ball behavior did not have a exible dimension along
which positional variability was acceptable. In truth however there are

Table 3.7 Changes in covariance envelope (within the position dimen sions, ") with re ne-
ment, ine cient sequence, average of 3 learning trials.

Ellipsoid Level
Before re nement ( ;)  After re nement ( |°)
tray, right 39 90 6:5 11:2
ball 6:5 41 99 74
cylinder 75 52 75 55
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Fig. 3.5 Changes in covariance envelope (within the position dimensi ons, "x) with reuse,
ball object within the unintuitive sequence. Callouts for the 3-D pl ot show a single dimension
projected onto the other two dimensions. Note that the foam ball is com pressed when
contacted by the end-e ector.

arguably two such exible dimensions, since the hand may be psi-
tioned to have initial contact with the ball over a spectrum of posi-
tions and still successfully grasp the object, ranging fromthe inside
to outside of the palm and the bottom of the palm to the ngerti ps.
The teacher of the e cient sequence did not exploit either of these
dimensions during demonstration or correction, preferrirg instead to
demonstrate consistent positioning behavior. By contrast,the human
teacher of the ine cient sequence exploited the palm- ngertips dimen-
sion (Fig. 3.5). These results again emphasize that di erig amounts
of variability can be acceptable in dierent dimensions, and that to
increase policy performance might not in fact require an incease in
precision.

3.5 Experimental Results and Setup 2: Bimanual Relative
Positioning

For our second set of validation tasks, the robot learns to psition
both end-e ectors of its 7-DoF arms for bimanual object interaction.
Executions begin with the robot holding a basket in its right hand
and object in its left hand. The task is then to position the basket
to be in front of the robot, and position the object so that it might
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be dropped into the basket. The position of the right end-e ector is
de ned within the robot-centric coordinate frame, while th e position
of the left end-e ector is de ned within a coordinate frame centered on
the right end-e ector.

Fig. 3.6 Bimanual task of placing an object into a basket, demonstrated w ith a ball (left)
and reused with a cylinder (right).

The robot was provided with 4 teleoperation demonstrationsthat
placed a ball into the basket. The learned bimanual ball-baket policy
then was reused to place a cylinder into the basket, whose etgated
body required more clearance when being placed into the bask as well
as a change in hand orientation. Tactile corrections were pvided on
2 executions with the cylinder-basket policy, constituting re nement.

Figure 3.7 plots the regression signals following both reues (top)
and re nement (bottom) for the left and right arms (average over di-
mensions’\X 2 R3 and ’\q 2 R4). Indeed, we observe that corrections
induced a large shift in orientation when the ball-basket pdicy is reused
for the cylinder object, about midway through the task execuion (red
line). Corrections that then re ned the cylinder-basket behavior en-
couraged this orientation shift to occur even earlier in the execution
(yellow line) and to a more extreme degree (green line). Thogh no
real change in position was required for the new behavior, th@osition
of the left arm was slightly perturbed as a result of providing the tac-
tile corrections during reuse (upper left plot). These perurbations were
smoothed out following re nement however (lower left plot). Finally,
note that the right arm received no corrections during reuse since its
behavior of positioning the basket to be in front of the robot is nom-
inally the same for both objects, and so the regression sighaf the
right arm was unchanged by reuse.
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Position dimensions "« Orientation dimensions "

Fig. 3.7 Mean-centered covariance envelopes of the bimanual behavior mo died by reuse
(top) and re nement (bottom) for the left (blue) and gray (red) arms, averaged over the
position dimensions "y (left) and orientation dimensions Aq (right) of the regression pre-
diction space. Original envelopes as thin lines, post-adaptation envelo pes as thick lines.

Figure 3.8 reports on the relative change in covariance enVepe with
tactile corrections. The top graphs plot the (normalized) di erence in
covariance at each timestep before and after policy reuse, ithin the
position (left) and orientation (right) dimensions (average over dimen-
sions "y 2 R® and "4 2 R*). Recall that the right arm received no
corrections, and so there accordingly was no change in its gariance
envelope (dashed line). We see however that the covariance tie left
arm (solid line) holding the cylinder broadens (change in ceariance
> 0) within the position dimensions to facilitate a larger clearance
over the side of the basket (middle peak around timestep 50,ad line).
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Position dimensions "« Orientation dimensions "

Fig. 3.8 Relative change in covariance envelope with bimanual reuse (top) and subsequent
re nement (bottom), averaged over the position dimensions "y (left) and orientation di-
mensions "q (right) of the regression prediction space.

Following this, a narrowing (change in covariance< 0) of the envelope
within the orientation dimensions was seen, re ecting the reed for a
more precise object orientation when entering the basket érge valley
around timestep 75, yellow line).

The bottom graphs plot the (normalized) di erence in covariance
before and after re nement of the cylinder-basket policy. Within all
dimensions and for both arms, the covariance envelope at eadimestep
was narrowed (change in covariances 0). The positioning of the right
arm (dashed line) when entering the basket was a particular arget for
correction, as re ected in the extreme reduction in covariance within
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the position dimensions during the second half of the policyexecution
(after the green line).

These results con rm that the covariance of the learned polcy was
both narrowed and broadened at di erent points of the execuion to
facilitate adaptation to a new task. Moreover, the initial adaptation
that resulted from policy reuse was further encouraged witlre nement.
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Discussion and Conclusions

The empirical results have con rmed the successful reuse a@hre ne-
ment of policies using tactile feedback. Here we provide deission on
key aspects of the TPC algorithm, and follow with concludingremarks.

4.1 Discussion

We begin with a discussion of tactile corrections and policyreuse as
employed in this work, noting particular advantages of each A dis-

cussion also is provided about the presence of variability Vthin the

learned policy, and the choice of weight formulation for corected dat-
apoints. Following this, some promising directions for fure research
are highlighted.

4.1.1 Tactile Corrections

There are many potential sources for suboptimal demonstrabns.
While the teleoperation interface employed for demonstraion in this
work does allow for control of a high-DoF robot arm, there arelim-
itations. Since the robot arm is controlled by the human moving her
own arm, the issue of correspondence was present, though traparent

45
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from the perspective of the robot. Di erences in corresponénce instead
are adjusted for online by the human while demonstrating. THs limi-

tation therefore impacts primarily the human, who furtherm ore must
react to how another body - the robot's body, rather than her own -

executes motions and interacts with the object, possibly asa mirror

image if the human faces the robot. Our approach addresses Bapti-

mal demonstration with tactile corrections. Directly touc hing the robot

during execution has the advantage of changing the perspeiee of the
human, who now directly interacts with the body executing the task
(the robot).

Addressing the issue oembodimentthus is one feature of the TPC
algorithm that enables the e ective transfer of informatio n from teacher
to learner. Another is the online nature of the feedback, which allows
the teacher to provide feedback in the exact areas of the stat space
in need of policy modi cation, as they are visited by the leamer. The
teacher therefore is not required to revisit those states, b guess as
to their identity. The algorithm capitalizes on the existence of dis-
tinct instances during an execution, or equivalently alongan execution
trajectory, at which the policy behavior requires modi cat ion. Rather
than demonstrate a trajectory in full to provide the modi ed behavior
information, the teacher needs only to indicate a correctiom at these
instances. The online aspect means that corrections also tget exactly
those areas of the state space in need of policy improvemenghich can
address the issue of sparsity in the demonstration set and &wptimal
datapoints.

Finally, we note that in this work tactile corrections were shown to
improve the behavior of policies derived from multiple, diginct, policy
development techniques. In particular, the techniques of ask demon-
stration, policy reuse and policy mirroring were all employed for policy
development. While the initial performance of each technigie varied,
all were shown to bene t from tactile correction.

4.1.2 Policy Reuse

That policy reuse is automated is a key strength of the TPC approach:
similar characteristics between the tasks are automaticdy extracted
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for reuse, and dissimilar ones are adapted through tactile gidance.

In these experiments, reuse involved a single execution bye robot,
during which the human provided corrections. By contrast, teleopera-
tion involved 4 executions while under the control of the teacher. Not
only were the number of executions greater, but the teacher as re-
quired to be actively engaged throughout the entire executn, which
is not the case for reuse when the teacher needed only to be aatly
engaged when providing a correction. We therefore come to  quali-
tative conclusion that reuse requiredless e ort than teleoperation, and
without a sacri ce in performance.

When examining policy re nement in the rst set of experiments,
it was noted that the largest improvement came from re ning the sole
policy that derived from teleoperation demonstrations (Tbl. 3.2, ball).
The cause was the demonstrated policy's relatively low iniial success
rate, in comparison to those policies derived from reuse. Tis trend
also was observed for comparisons within a single task (TbB.4), where
similar or superior performance was consistently achievethrough reuse
in comparison to teleoperation. These results suggest thateuse is more
e ective at transferring domain knowledge than is teleopeation.

Admittedly these results are strongly tied to our robot plat form
and teleoperation mechanism, as well as to the task behavier Though
not the case for any of the tasks under consideration in this wark,
presumably there exists a point at which tasks are su ciently dissimi-
lar for reuse to be e ective, and thus when teleoperation beomes the
more e ective tool for transferring domain knowledge. The dssimilarity
between tasks may be roughly gauged by the amount of correain re-
quired for reuse to be e ective. Another consideration migh be whether
the new task requires that the covariance envelope be broaded versus
narrowed; Section 3.4.2 posited that reuse for a behavior thtarequires
covariance narrowing might be less e cient than broadening

4.1.3 Re ecting Demonstration Variability in the Policy

This work employed a variant on the GMM-GMR regression formua-
tion, that allowed for deviations from the weighted mean of the demon-
strations. The goal of such a formulation was to allow for exibility in
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the resulting policy execution. A noted bene t of such exibility is the
possibility of following a more direct path to the target position. As
a trade-o, potential detriments included reaching the tar get position
less reliably however.

This formulation may equivalently be seen as using di erenes be-
tween demonstrations as a template by which to infer those pés of
the state space in which the task permits variability in the execution.
Likeminded approaches have aimed to infer the crucial aspé¢s of task
execution by extracting what is similar between multiple demonstra-
tions or demonstrators (e.g. Calinon et al. (2009); Jakel ¢ al. (2010);
Kaiser et al. (1995); Pook and Ballard (1993)).

We highlight that, in the work of this article, acceptable vari-
ability in the task execution was e ectively conveyed by the teacher
through multiple modalities; namely, teleoperation and tactile correc-
tions. Moreover, we claim that the modalities were individually better
suited for di erent areas of the state space. In particular, to indicate
generality in starting position, teleoperation was very e ective. To pro-
vide generality over starting positions with tactile feedback we expect
would have been quite tedious in comparison, as the tactile irerface
is best suited for small iterative movements. By contrast, toindicate
generality at the target position was best provided throughthe tactile
interface, which was more responsive to precise positionfn

4.1.4 Weighting New Datapoints

We also employed the idea of demonstration variability within our
weight formulation for new datapoints during policy re nem ent. In par-
ticular, in areas that exhibited little variability during teacher demon-
stration, the new behavior examples produced as a result ofactile
corrections were considered to be very signi cant. By contast, in areas
that exhibited much variability during demonstration, the presence of
additional variability in the form of new corrected behavior examples
was more expected, and thus considered to be less signi cant

We expect the development of suitable weight functions for or-
rected datapoints to be an active area for future research. Mny for-
mulations are potential candidates, and their suitability depends at a
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higher level on what the designer wants to see come out of thehrn-
ing. For example, a separate weighting function might be emjoyed for
re nement versus reuse, instead of the one-shot formulatio employed
in this work. Another learning objective could be to infer the worth of
particular datapoints, according to some utility function , and therefore
not rely on the assumption that corrected datapoints are beter exam-
ples (than the demonstrated datapoints) of the target task benavior.

415 Future Work

There are many promising extensions to this work. From an algrithmic
standpoint, one might consider alternative paradigms for tting the
weight on the in uence of new data on a policy update, as prevbusly
discussed. Correcting within the action space is another a@a of interest,
where for example human touch indicates changes in joint spel instead
of, or in addition to, changes in pose. Such a formulation wold no
longer require that the policy execution be split into two parts (pose
prediction and action selection), though undoubtedly would introduce
nontrivial considerations with respect to implementation.

From an implementation standpoint, to validate TCP on a more
sophisticated tactile sensor, that provides a richer set ofeedback sig-
nals, is one direction that we are actively pursuing. Anothe direction
is to expand the application in uence of the tactile corrections, for
example to correct the entire arm pose in addition to end-e etor posi-
tion. The formulation for policy derivation also might be im proved, for
example by using a dynamical systems formulation that remoes time-
dependence and allows for greater generalization over theate space
(e.g. Khansari-Zadeh and Billard (2010)). Such a formulaton further-
more would be amenable to providing corrections within the ation
space. The formulation for policy rederivation is a topic for potential
future work as well. The need to keep around all of the trainingdata is a
drawback of our current system, that could be addressed by adrmula-
tion that iteratively adapts, instead of completely retrai ns, the learned
model. Partial retraining is another option, where the modd is adapted
only in those areas of the state space where corrections oaced.
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4.2 Conclusions

We have introduced Tactile Policy Correction (TPC) as an algorithm
for the re nement and reuse of policies through tactile feedback from
a human teacher. With tactile corrections, we aimed to improve the
performance of a demonstrated behavior in response to exeton ex-
perience, and to mitigate some potential limitations in dermonstration-
based learning. Multiple teaching modalities - namely, tekoperation
and tactile corrections - were employed to provide examplesf behav-
ior execution, and we have highlighted the di ering suitability of each
for providing information about acceptable variability in the task be-
havior at di erent points during the task execution.

We have validated TPC on a humanoid performing end-e ector po-
sitioning tasks. Tactile corrections were found to improvethe perfor-
mance of, and thusre ne , a demonstrated policy. Furthermore, tactile
feedback was shown to enable policy development bootstraga from
an existing behavior, and thus policy reuse Comparisons to policies
derived from solely teleoperation demonstration con rmedpolicy reuse
to be an e ective mechanism for transferring domain knowledye, and
policy re nement to be more successful at improving perfornance. Fu-
ture work will consider alternate algorithmic formulation s for tactile
re nement and reuse, and furthermore will validate TPC with a more
sophisticated tactile sensor.
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