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Abstract

Demonstration learning is a powerful and practical technique to de-
velop robot behaviors. Even so, development remains a challenge and
possible demonstration limitations, for example correspondence issues
between the robot and demonstrator, can degrade policy performance.
This work presents an approach for policy improvement through a tac-
tile interface located on the body of the robot. We introducethe Tactile
Policy Correction (TPC) algorithm, that employs tactile feedback for
the re�nement of a demonstrated policy, as well as itsreuse for the
development of other policies. The TPC algorithm is validated on hu-
manoid robot performing grasp positioning tasks. The performance of
the demonstrated policy is found to improve with tactile corrections.
Tactile guidance also is shown to enable the development of policies
able to successfully execute novel, undemonstrated, tasks. We further
show that di�erent modalities, namely teleoperation and tactile control,
provide information about allowable variability in the targ et behavior
in di�erent areas of the state space.
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1
Introduction

The realization of physical movement is fundamental to manyrobotics
applications. Whether operating in industrial and laboratory settings,
or within general society, physically embodied robots typically are
tasked with the execution of physical actions, thus requiring an al-
gorithm for motion control. Over the years a variety of approaches for
motion control have been proposed, with many resulting in impressive
robot capabilities. The development of control paradigms becomes in-
creasingly di�cult however as robot and domain complexities grow,
for example with high degree-of-freedom manipulators or interactions
with compliant objects. Often traditional approaches that de�ne ex-
plicit mathematical models of the world, and from these derive rules
for control, struggle to scale with increasing complexity.Moreover, the
development of a control paradigm for any robot platform is confounded
by di�culties such as noisy sensors and inaccurate actuation.

In the face of such challenges, to develop robust control algorithms
typically requires a signi�cant measure of expertise and e�ort from the
developer. The advancement of techniques that reduce the demands
placed on a developer therefore are desirable. We introducein this ar-
ticle an approach to policy development in which corrections provided
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Fig. 1.1 Our approach of a) task demonstration, followed by tactil e correction of the learned
policy for b) re�nement of the demonstrated behavior and c) its reuse in th e development
of other policies. Black solid arrows indicate demonstrated or corrected execu tions, black
dashed arrows generalization executions and white arrows human hand movement.

by a teacher through a tactile interface are used to adapt andimprove a
policy. Our Tactile Policy Correction (TPC) algorithm initially derives
a policy via Learning from Demonstration (LfD) techniques (Fig. 1.1a).
Under LfD, a robot learner generalizes a policy from data recorded dur-
ing the execution of a target behavior by a task expert. Our approach
then has a human teacher provide policy corrections througha tactile
interface located on the body of the robot. The corrections indicate
relative adjustments to the robot pose, and thus to the policy predic-
tions. The teacher provides corrections in order to accomplish one of
two goals, and how corrections are incorporated into the policy di�ers



1.1. Background and Motivation 3

for each. The �rst goal is to re�ne a policy during execution, and thus
to improve its performance based on execution experience (Fig. 1.1b).
The second goal is to assist in policyreuse, by guiding an existing
policy towards accomplishing a di�erent task (Fig. 1.1c).

We validate our approach on a humanoid robot performing end-
e�ector positioning tasks. We show that policies produced under our
policy derivation technique are exible with respect to variability seen
between the teacher demonstrations, and furthermore that di�erent
teaching modalities (i.e. task demonstration, tactile correction) pro-
vide information about acceptable execution variability within di�er-
ent areas of the state space. The performance of a policy learned from
demonstration is shown to improve after re�nement through tactile
corrections. Successful policyreuse also is validated. Through tactile
guidance, executions with existing policies are iteratively adjusted to-
wards producing new behaviors, with the result of policies able to exe-
cute alternate, undemonstrated, tasks. Tactile corrections thus enable
the development of new policies, bootstrapped on the reuse of a policy
learned from demonstration.

The remainder of this chapter reports on the related literature
that supports this work. Chapter 2 introduces the TPC algori thm and
presents our implementation in detail. Experimental setupand results
are reported in Chapter 3. A discussion of our approach and �ndings
are provided in Chapter 4, followed by concluding remarks.

1.1 Background and Motivation

We begin with a discussion of policy development underLearning from
Demonstration (LfD) , followed by existing approaches to policy re�ne-
ment and reuse within LfD.

1.1.1 Learning from Demonstration

Under LfD, teacher executions of a desired behavior are recorded and
a policy is derived from the resultant dataset. LfD has seen success in a
variety of robotics applications, and has the attractive characteristics of
being an intuitive means for human teacher to robot learner knowledge
transfer, as well as being an accessible policy developmenttechnique for
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those who are not robotics-experts. There are many design decisions to
consider when building an LfD system. These range from who executes
the demonstrations and how they are recorded, to the technique used
for policy derivation. Here we overview only those decisions speci�c
to our particular system, and refer the reader to Argall et al. (2009)
and Billard et al. (2008) for a full review of robot LfD.

When recording and executing demonstrations the issue ofcorre-
spondenceis key, where teacher demonstrations do not directly map
to the robot learner due to di�erences in sensing or motion (Nehaniv
and Dautenhahn, 2002). Correspondence issues are minimized when the
learner records directly from its own sensors while under the control
of the teacher. For example, underteleoperation the teacher remotely
controls the robot platform (e.g. Sweeney and Grupen (2007)), while
under kinesthetic control the teacher touches the robot to guide the
motion (e.g. Calinon and Billard (2007)). Teleoperation requires an in-
terface for the direct control of all degrees of freedom on the robot. By
contrast, kinesthetic teaching requires a (passive or active) responsive-
ness to human touch, for example back-drivable motors or force-torque
sensing in the joints. Both techniques are employed in our work.

Many approaches exist within LfD to derive a policy from the
demonstration data (Argall et al., 2009), the most popular of which
either directly approximate the underlying function mappi ng obser-
vations to actions, or approximate a state transition model and then
derive a policy using techniques such as Reinforcement Learning (Sut-
ton and Barto, 1998). Our work derives a policy under a variant of
the �rst approach, where probabilistic regression techniques are used
to predict a target robot pose based on world state, and a controller
external to the algorithm selects an action able to accomplish this tar-
get pose. Our reason for splitting policy prediction into these two steps
is tied to the mechanism by which the algorithm responds to tactile
feedback (discussed in Sec. 2.1).

1.1.2 Policy Re�nement and Reuse

Even with the advantages secured through demonstration, policy de-
velopment typically is still non-trivial. To have a robot le arn from its
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execution performance, orexperience, therefore is a valuable policy im-
provement tool for any development technique. Within the context of
LfD speci�cally, execution experience can be used to overcome limita-
tions in the demonstration dataset. One possible limitation is dataset
sparsity, since demonstration from every world state is infeasible in all
but the simplest domains. Other limitations include poor correspon-
dence between the teacher and learner or de�ciencies in the teacher,
who may in fact provide suboptimal or ambiguous demonstrations.
Here we consider policyre�nement and policy reuse as two techniques
to assist the development process, or equivalently to reduce the strain
on the policy developer.

Within demonstration learning, a variety of approaches incorporate
information gathered from experience in order tore�ne a policy. For ex-
ample, execution experience is used to update reward-determined state
values (Guenter et al., 2007; Kober and Peters, 2009; Stolleand Atke-
son, 2007) and learned state transition models (Abbeel and Ng, 2005;
Bagnell and Schneider, 2001). Other approaches provide more demon-
stration data, driven by teacher-initiated demonstration s (Calinon and
Billard, 2007) as well as by learner requests for more data (Chernova
and Veloso, 2008; Grollman and Jenkins, 2007). In this work,we also
provide more data, but using a di�erent control mechanism than during
the initial teacher demonstrations; speci�cally, teleoperation is used for
the initial demonstration data, and a form of hybrid kinesth etic control
when producing the re�nement data.

Policy reuse under LfD occurs most frequently with behavior prim-
itives, or simpler policies that contribute to the execution of a more
complex policy. Hand-coded behavior primitives are used within tasks
learned from demonstration (Nicolescu and Mataric, 2003),demon-
strated primitives are combined into a new policy by a human (Saun-
ders et al., 2006) or automatically by the learning algorithm (Argall,
2009), and demonstrated tasks are decomposed into a libraryof primi-
tives (Bentivegna, 2004). The focus of our approach is instead on adapt-
ing an existing policy to accomplish adi�erent task, rather than incor-
porating the existing behavior as a subcomponent of a largertask.
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1.1.3 Tactile Corrections

To enable policy re�nement and reuse, the approach taken in this work
is to provide corrections on a policy execution. Corrections have the ad-
vantage of providing guidance on a more suitable alternate prediction
for the policy, instead of requiring that this be inferred from an indi-
cation of prediction quality, as state reward does for example. Having
directed feedback becomes particularly relevant when guiding a policy
towards accomplishing a novel behavior.

Within LfD policy correction has seen limited attention, an d most
examples consider a human teacher selecting the correct prediction
from a discrete set of actions with signi�cant time duration (Chernova
and Veloso, 2008; Nicolescu and Mataric, 2003). The target application
domain for our work however has policies making continuous-valued
predictions at a rapid rate, and both features complicate the individ-
ual selection of a single alternate prediction to serve as the correction.
To address these challenges, we translate feedback from a tactile sensor
into continuous-valued modi�cations of the current pose online, as the
robot executes. In contrast to other work with continuous-valued cor-
rections (Argall, 2009), we o�er corrective feedback online, instead of
post-execution, and through a tactile interface, instead of a high-level
computational language.

We posit that tactile feedback furthers many of the strengths of
demonstration-based learning. Namely, humans already usetouch to
instruct other humans in certain contexts; for example whendemon-
strating a motion, like a tennis swing, that requires a particular position
trajectory. To augment demonstration learning with tactile feedback
therefore is one natural extension to the idea of teaching robots as
humans teach other humans. Demonstration-based policy development
also is accessible to those who are not robotics experts, andpossibly
operating robots outside of laboratory or industrial settings. Here the
detection of tactile interactions can be critical for safe robot opera-
tion around humans, and so tactile sensing gains importanceon a very
fundamental level. These tactile sensing capabilities might then be ad-
ditionally exploited, to transfer knowledge from human to robot for the
purpose of behavior development.
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Within the �eld of robot learning (including but not restric ted to
LfD), only a handful of works utilize human touch for the develop-
ment of robot behaviors. For example, tactile feedback is detected in
order to minimize resistance to movement during demonstration with
an industrial arm (Grunwald et al., 2003), and to minimize th e support
forces provided by a teacher during humanoid behavior learning (Mi-
nato et al., 2007). Tactile interactions between a robotic pet-surrogate
and elderly patients also are mapped to reward signals, thatare used
within a Reinforcement Learning paradigm to adapt behavior selec-
tion (Wada and Shibata, 2007).

1.2 Our Approach

In summary, the approach presented in this paper employstactile cor-
rections to modify a policy learned through demonstration, for the
purpose of both policy re�nement and policy reuse.

Our target application domain is low-level motion control for high
degree-of-freedom (DoF) robots. To specify a target behavior for each
joint is complicated, and systems typically are under-constrained, re-
sulting in for example many joint con�gurations mapping to a sin-
gle end-e�ector pose. The ability to exploit previously learned domain
knowledge for the development of new policy behaviors, i.e. policy
reuse, thus is advantageous. Performance might su�er however if the
reused policy provides only an approximation to the new target behav-
ior. Moreover, while the use of demonstration for policy development is
practical for many reasons, it is limited by the interface controlling the
demonstration, the quality of which furthermore frequently degrades as
the degrees of freedom to control increase. We aim to overcome policy
de�ciencies through re�nement.

To accomplish both re�nement and reuse, the policy incorporates
new behavior examples. Instead of producing the examples from teacher
demonstration however (Calinon and Billard, 2007; Chernova and
Veloso, 2008; Grollman and Jenkins, 2007), which would be unable to
improve upon limitations like a poor demonstration interface, we have
the student respond online to corrections indicated by a teacher and
treat the resultant trajectory as new training data. Provid ing explicit
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corrections has been seldom used within the LfD paradigm (Chernova
and Veloso, 2008; Nicolescu and Mataric, 2003), especiallywhen the
corrections are continuous-valued and rapidly sampled (Argall, 2009).

We provide corrections through a tactile interface. In addition to be-
ing a technique that is relatively unaddressed to date within the robot
learning literature in general (Minato et al., 2007; Wada and Shibata,
2007), and LfD literature in particular (Grunwald et al., 20 03), we argue
that information transfer through human touch is a natural e xtension
of human demonstration, as an intuitive and e�ective mechanism for
the transfer of knowledge from human to robot.



2
The Tactile Policy Correction Algorithm

We introduce Tactile Policy Correction (TPC) as an algorithm for the
re�nement and reuse of motion policies, accomplished via tactile feed-
back from a human teacher (Argall et al., 2010). A policy initially
is derived from demonstrations of a task by a teacher. Through tac-
tile corrections, the policy then either is re�ned to better perform the
demonstrated task, or modi�ed to accomplish an undemonstrated task
and thus reused in the development of a new policy. An overview of
the algorithm ow is provided in Figure 2.1, and pseudo-codefor this
approach in Algorithm 1.

We formally de�ne the world to consist of actions a 2 A and obser-
vations z 2 Z of world state, wherea 2 R` and z 2 R(m+ n) . An obser-
vation z consists of two components,z = ( z ' ; z : ' ), where z ' 2 Rm

describes the robot pose, andz : ' 2 Rn describes any other observables
that are of interest to the policy.1 We de�ne a demonstration to consist
of a sequence ofNd observationsf z j gNd

j =1 , recorded during teacher exe-
cution of the task. A policy � : Z ! A is derived from the collected set

1 Pose information is necessary for the TPC algorithm, and so z ' 6= ; . The presence of
additional observation information however is application-depen dent, and possibly absent
such that z : ' = ; .

9
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Fig. 2.1 Flow overview of the Tactile Policy Correction algorithm u nder the operational
modes of re�nement and reuse.

D = f z j gN
j =1 of N datapoints from multiple demonstration executions.

2.1 Algorithm Execution

The �rst phase of the TPC algorithm consists of task demonstration
by the teacher, producing datasetD from which the learner derives
an initial policy � . The second phase of the algorithm involves learner
execution with the policy � , and corrective tactile feedback which is
used to adapt � . This execution-correction-adaptation cycle continues
to the satisfaction of the teacher.

A single execution-correction-adaptation cycle is presented in Al-
gorithm 1. Policy execution (lines 8-10) at timestep t consists of two
phases: prediction of a target posêz t

' , and the selection of an action
to accomplish that pose. Pose prediction is accomplished via regression
techniques, based on state observationz t � 1 (line 9). Action selection is
accomplished via a robot-speci�c controller, and its execution results
in a new robot posez t

' (line 10).
The human teacher may choose to o�er a tactile correction at any

timestep of the execution. If detected, the robot learner translates the
tactile feedback into an incremental shift � t

� 2 Rm in robot pose, ac-
cording to mapping M (line 12). Note that the form taken by the tactile



2.1. Algorithm Execution 11

Algorithm 1 Tactile Policy Correction
1: Given D
2: initialize � 0  0
3: derive �  policyDerivation (D )
4: set re�ne = true _ reuse = true
5:
6: while correcting do
7: initialize � t

�  0
8: Policy � execution:
9: predict ẑ t

'  regression
�
z t � 1 �

10: execute z t
'  controller

�
ẑ t

' + � t � 1 �

11: if f detect touchg then
12: map � t

�  M (touch)
13: correct z t

'  controller
�
z t

' + � t
�

�

14: end if
15: record � t  � t � 1 + � t

�

16: if f re�ne g then
17: set wt

18: record D  D [
�
z t ; wt �

19: else f reuse g
20: select D s � D
21: replace z i

'  z i
' + � t ; 8z i 2 D s

22: end if
23: end while
24:
25: if f re�ne g then
26: rederive �  policyDerivation (D )
27: return �
28: else f reuse g
29: derive � 0  policyDerivation (D )
30: return � 0

31: end if

feedback is platform-speci�c, depending both on the tactile sensors em-
ployed to detect contact and how the sensor feedback is processed.

The robot controller is then passed the newadjusted pose, for which
the incremental shift � t

� is added to the current robot posez t
' (line 13).

The inuence of this incremental shift is maintained over multiple
timesteps, through an o�set parameter � t 2 Rm that maintains a sum
of all adjustments seen during the execution (line 15) and isadded to
the pose prediction at each execution timestep (line 10).

How the pose adjustment is recorded into the policy is handled
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di�erently for policy re�nement versus policy reuse:

� For policy re�nement , the corrected execution is treated as
new data for the policy (lines 16-18). Observationz t , and a
weight wt 2 [0; 1] for the new datapoint (details in Sec. 2.4.1),
are recorded into the setD . The tactile correction thus also
is recorded since the current pose, that has responded to the
tactile feedback, is recorded through componentz t

' 2 z t .

� For policy reuse, the indicated correction is applied to exist-
ing points within the dataset (lines 19-21). A subset of points
Ds � D are selected, and the o�set� t is applied to their pose
componentsz ' (details in Sec. 2.4.2).

In both cases the datasetD is modi�ed and, upon completion of the
entire execution, a policy is derived from this set. In the case of re-
�nement, the existing policy � is replaced with an updated version via
rederivation (line 26). In the case of reuse, a new policy� 0 is derived,
leaving the original policy � unchanged (line 29).

Important to note is that the TPC algorithm is generic with re spect
to the techniques used for pose prediction (regression ) and action
selection (controller ) during policy execution, as well as to the tech-
nique that translates tactile feedback into a pose adjustment (mapping
M ). The following sections (2.2-2.3) will describe the particular tech-
niques we employ for the implementation of the TPC algorithm within
this article.

2.2 Policy Execution

This section describes policy execution under our implementation of
the TPC algorithm. For pose prediction, Gaussian Mixture Regression
is employed (Sec. 2.2.1) along with a modi�cation to allow for execu-
tion variability (details in Sec. 2.5), and for action selection an inverse
kinematic controller (Sec. 2.2.2).
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2.2.1 Pose Prediction

Target poses are predicted through theGMM-GMR algorithm (Calinon
and Billard, 2007), which �rst encodes demonstrations in aGaussian
Mixture Model (GMM) and then predicts a target pose throughGaus-
sian Mixture Regression (GMR) (Cohn et al., 1996). The parameters
of the GMM are trained under a weighted version of theExpectation-
Maximization (EM) algorithm. Full details of the GMM-GMR process
and our weighted EM implementation are provided respectively in Ta-
bles 2.1 and 2.2.

Our implementation de�nes observation component z ' as the
Cartesian position x 2 R3 and orientation q 2 R4 (as a quaternion,
kqk = 1) of the end-e�ector in a robot-centric reference frame. Thus
z ' � [x ; q] 2 R7. We further de�ne component z : ' � � 2 R as the
time of the recorded observation. The GMM thus models the joint prob-
ability of the temporal and spatial aspects of the demonstrations. To
make a pose prediction, GMR estimates the conditional expectation of
z ' given z : ' ; formally, the expectation E (p(x ; qj� )), also referred to
as the marginal joint probability p� (x ; q).

The output of GMM-GMR is a mean trajectory and associated co-
variance envelope. Our formulation additionally takes advantage of the
probabilistic nature of this regression technique to generate variabil-
ity, and thus exibility, in the predicted trajectory. The d etails of our
approach to deviating from the regression trajectory are provided in
Section 2.5.

2.2.2 Action Selection

Given a target poseẑ ' , action selection is accomplished via an inverse
kinematic controller. Our action spaceA consists of the 7-DoF velocity
vector _� 2 R7 controlling the joint angles of a robot arm. The manip-
ulator of our implementation (Sec. 3.1) is redundant, as thenumber of
degrees of freedom (7) exceeds the number of constraints (6,position
and orientation). We therefore compute desired joint anglevelocities _�
according to the distance between the target posêz t

' and the current
robot posez t

' by using a pseudo-inverse method that both avoids joint
limits and is robust to singularities (Baerlocher and Boulic, 2004).
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Table 2.1 Gaussian Mixture Regression (GMR)

The demonstrations within dataset D are modeled probabilistically within
a Gaussian Mixture Model (GMM), that de�nes for each point z j 2 D a
probability function given by a mixture of K Gaussian components

p(z j ) =
KX

k =1

p(k) p(z j jk) =
KX

k =1

 k N
�
z j ; � k ; � k

�

where  k is the prior of the k th component, and N
�
z j ; � k ; � k

�
is a Gaus-

sian distribution with mean � k and covariance � k . The optimal number of
components K is determined according to the Bayes Information Criterion
(BIC) . In this work, a datapoint z j consists of two parts: pose z j

' (� [x ; q])
and timestamp z j

: ' (� � ), which for notational simplicity we reference here
respectively with ' and � . To compute a conditional expectation of ' given �
(i.e. z ' given z : ' ) for each component k, we �rst de�ne

� k =
�

� �;k ; � ';k
�

; � k =
�

� � �;k � � ';k
� '�;k � '';k

�

and Gaussian Mixture Regression (GMR) then uses

p (' k j �; k ) � N
�

' k ; �̂ ';k ; �̂ '';k

�

�̂ ';k = � ';k + � '�;k
�
� � �;k

� � 1 �
� � � �;k

�

�̂ '';k = � '';k � � '�;k
�
� � �;k

� � 1 � � ';k

to provide the expected distribution of ' given � for component k (i.e. z ';k
given z : ' ) . Finally, by considering all of the components k and their regression
priors � k (� ), a target pose ẑ ' is predicted with mean �̂ ' and covariance �̂ ''

according to

�̂ ' =
KX

k =1

� k (� ) �̂ k ; �̂ '' =
KX

k =1

� k (� )2 �̂ '';k

� k (� ) =
p (k) p (� jk)

P K
i =1 p (i ) p (� ji )

=
 k N

�
� ; � �;k ; � � �;k

�

P K
i =1 N (� ; � �;i ; � � �;i )

2.3 Tactile Corrections

Our interface for providing tactile corrections to the robot learner con-
sists of �ve Ergonomic Touchpads located on the manipulator arm.2

2 Touchpad feedback is somewhat limited in comparison to more sophistica ted tactile sen-
sors. In practice corrective repositioning is not always as responsive as the teacher requires,
and so we pause policy execution such that psuedo-code lines 12-13 loop un til reposition-
ing is complete. Note that this limitation results from a de�ciency in h ardware, not the
algorithm. The validation of TPC with a more sophisticated tactil e sensor is under active



2.3. Tactile Corrections 15

Table 2.2 Weighted Expectation-Maximization (EM)

Our weighted version of the EM algorithm modi�es GMM-GMR parameter es-
timation to include weight w j � 0; � N

j =1 w j > 0. The algorithm loops between

the E-step and M-step until the overall likelihood
P K

k =1 Ek is maximized:
E-step:

p( i +1)
k;j =

 ( i )
k N

�
z j ; � ( i )

k ; � ( i )
k

�

� K
i k =1  ( i )

i k
N

�
z j ; � ( i )

i k
; � ( i )

i k

�

E ( i +1)
k = � N

j =1 w j p( i +1)
k;j

M-step :

 ( i +1)
k =

E ( i +1)
k

� N
j =1 w j

� ( i +1)
k =

� N
j =1 w j p( i +1)

k;j z j

E ( i +1)
k

� ( i +1)
k =

� N
j =1 w j p( i +1)

k;j

�
z j � � ( i +1)

k

� �
z j � � ( i +1)

k

� T

E ( i +1)
k

The pads detect contact presence and relative motion, whichwe map
to a change in end-e�ector position and orientation.

Four touchpads, T0 � � � T3, encircle the lower forearm of the robot
arm (near the wrist), and one, T4, is located on the back of the robot
hand (Fig. 2.2a,b). Touch data from pad Tk ; k = 0 ::4; consists of a 2-
D relative change in pixels

�
� ut

k ; � vt
k

�
. The target pose adjustement

� t
� is computed using the forward kinematic function f of the whole

arm, such that � t
� = f (� t + _�

t
� t) � ẑ t

' . Here � t is the current joint
con�guration, � t the timestep for touchpad data capture,ẑ t

' the target

pose predicted by the regression model, and_�
t

the joint velocity to
accomplish the adjustment, the computation for which is described
next. In practice, we decompose the mappingM 7! � � into two distinct
parts that operate separately on the wrist and hand, as this seemed a
more intuitive mapping for the experimenters providing corrections.

The �rst part of the mapping M operates on the �rst 5-DoF leading
to the wrist of our 7-DoF manipulator. Sliding the �ngers alon g two

development for future work.
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Fig. 2.2 a,b) Schematic of the touch pads controlling the robot wrist and hand. c,d) Fingers
sliding on opposite pads produces rotational (c) or translational (d) motions.

opposite touchpads leads either to a translational or rotational motion
command, depending on whether the sliding directions agreeor not
(Fig. 2.2c,d). The velocity _z t

' for the pose correction is computed by
mapping touch data (in R8, 4 pads� 2-D data) from pads T0 � � � T3 to
a vector describing the target velocity in Cartesian-space wrist coor-
dinates, and then to robot-centric world coordinates through rotation
matrix R:

_z t
' =

�
R
R

�

2

6
6
6
6
6
6
6
4

� �
�
� � vt

0 + � vt
2

�

� �
�
� vt

1 � � vt
3

�

� �
�
� � ut

0 � � ut
1 � � ut

2 � � ut
3

�

� !
�
� � ut

0 + � ut
2

�

� !
�
� ut

1 � � ut
3

�

� !
�
� vt

0 + � vt
1 + � vt

2 + � vt
3

�

3

7
7
7
7
7
7
7
5

Constant parameters � � and � ! scale respectively the translational
and rotational components of the touch data, to account for di�erences
in units (pixels for the tactile feedback, m

s and rad
s for the velocity

components). The mapping from Cartesian-space velocity_z t
' to joint

velocity _�
t
f 0::5g for the �rst 5-DoFs in the arm then is computed using

inverse kinematics (Baerlocher and Boulic, 2004).
The second part of the mappingM operates on the last 2-DoF of

the manipulator, that control the robot hand. Touch data (in R2, 1
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pad � 2-D data) from pad T4 thus maps directly to the target joint
velocities, such that _� f 6::7g =

�
� � � ut

4; � � � vt
4

�
.

2.4 Policy Adaptation

Upon the completion of a corrected execution, policy adaptation is
accomplished by (re)deriving the policy from the feedback-modi�ed
dataset. How the dataset has been modi�ed depends on whetherthe
policy is being adapted for the purpose of re�nement (Sec. 2.4.1) or
reuse (Sec. 2.4.2). The operational mode for the algorithm,being either
re�nement or reuse, is indicated by the teacher (Alg. 1, line4).

Policy (re)derivation consists of (re)estimating the regression pa-
rameters, again using the weighted EM algorithm (Tbl. 2.2). Though
policy execution under TPC consists both of pose predictionvia re-
gression techniques and action selection by a controller, under our
implementation the controller is statically de�ned. Polic y derivation
therefore requires regression parameter estimation only.

2.4.1 Adaptation for Policy Re�nement

When tactile corrections are provided for the purpose of policy re�ne-
ment, new datapoints are generated by the execution-correction pro-
cess. A weight is associated with each point in the setD , and therefore
must be determined for any new datapoints as well.

Datapoint weights are assigned based on the covariance envelope of
the original GMM derived from the demonstration data. In par ticular,
we de�ne weight functions for corrected executionswC (t) and demon-
strated executionswD (t) as

wC (t) = 1 �
j�̂ t

'' j
1
2

2 � � max
; � max = max

t
j �̂ t

'' j
1
2 (2.1)

wD (t) = 1 � wC (t) (2.2)

where j�̂ t
'' j is the determinant of the GMR prediction covariance ma-

trix at time t. We then assign weightwj for datapoint z j with functions
wD (t) or wC (t), based on whetherz j was part of a demonstrated or
corrected execution (respectively) and the time (� � z j

: ' ) of the ob-
servation recording.
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x

t

x

t

x

t

wC

t
0

1

wD dt

t
0

wC

wD

Smax

|S|^ 1
2
_

Original demonstrations
Original regression mean
Original regression covariance

Adapted demonstrations for reuse
“Reused” regression mean

Original regression covariance

“Reused” regression covariance

Corrected executions
“Refined” regression mean

Original regression covariance

“Refined” regression covariance

Refinement

Reuse

Fig. 2.3 Illustration of policy adaptation under re�nement and reuse. Top center: Original
demonstration data, with associated regression mean and covariance envelop e. Re�nement
panel: Our weight function formulation (top), that is a function of covariance envelope size

(j �̂ j
1
2 ). Illustration of an example weight function (middle) and how wit h it the covariance

envelope narrows more dramatically as time progresses and wC � wD (bottom). Reuse
panel: Illustration of the accumulation of correction o�sets during a n execution (top), and
how this shifts the points in the dataset and thus the regression signa l (bottom).

With this weight formulation, we assume teacher demonstrations
provide an accurate portrayal of the variability pro�le of t he task. That
is, in areas of low covariance, little variability is allowed (or equiva-
lently, high precision is required) in the target task behavior, while in
areas of high covariance, much variability in the resulting behavior is
acceptable, even expected. With our weight formulation, in areas of
low covariance (j�̂ t

'' j
1
2 � � max ), corrected datapoints are given a high

weight, and the regression signal accordingly shifts strongly. By con-
trast, in areas of high covariance (j�̂ t

'' j
1
2 ! � max ), it is not unexpected

that executions might di�er from the demonstrated behavior , and so
demonstrated and corrected execution points are given approximately
equal weight. In Figure 2.3 (Re�nement panel) this weight formulation
is shown (top), as well as an example weight function (middle) and the
resulting adapted regression signal (bottom).
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2.4.2 Adaptation for Policy Reuse

When tactile corrections are provided for the purpose of policy reuse,
existing points within the set D are modi�ed. In particular, a subset of
points Ds � D are selected, and the pose adjustment is applied to the
pose component of these points (z ' 2 Ds). Note that an entirely new
policy is instantiated when reuse is employed, and it is not expected
after reuse that the new policy be able to perform the task of the
original policy from which it was adapted.

The subset Ds is selected according to nearness, within the input
space of the regression function, between the execution point that re-
ceived the tactile correction and the points within dataset D . In our
work the input space of the regression function is executiontime. Since
our demonstrations are resampled to have an equal number of exe-
cution points, the metric for nearness is straightforward: for a given
modi�ed execution point z t , we build Ds by simply taking all points
in D that occurred at this same time in their respective demonstration
trajectories, such that Ds = f z i jz i

: ' = z t
: ' ; 8z i 2 Dg. We then apply

to the pose components of these points the o�set� t .
With this nearness metric however, caution must be exercised when

changing points within the dataset. In particular, our regression formu-
lation (details in the following section, 2.5) allows for deviations from
srictly following the regression signal - that is, the mean trajectory -
of GMR. Thus at the same point in time with respect to the execu-
tion sequence, di�erent executions might be in distinct areas of the
state space for which the target policy behavior di�ers. Caution must
be exercised since a correction which is appropriate for onelocation
might not be appropriate for the other. Consider for examplea policy
for object grasping, where at the time just prior to grasping a di�erent
hand orientation is required depending on the direction of approach.
A correction that ips the robot hand by 90 degrees thus might be
appropriate if the object was approached from the top (causing the
object to be grasped from the side), but not if approached from the
side (causing an attempted grasp from below, and a collisionwith the
object's supporting surface).

We address this issue by restricting the operational mode ofreuse to
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correcting only executions that follow exactly the regression signal. This
restriction ensures that an execution point receiving corrections lies at
the regression mean of the set of datapoints with similar timestamps.
Any provided corrections thus produce o�sets that are appropriate for
this mean, and are not particular to the extremes of these points. Note
that this restriction is in place only for reuse, and is lifted for executions
that are a straightforward reproduction or corrected for the purpose of
re�nement.

In conclusion, the idea behind the TPC formulation for reuse is
to take one large step in the direction of the new policy behavior, by
shifting entire subsets of the existing dataset. By comparison, if the
modi�ed execution was instead added to the existing dataset, as in
re�nement, the new data would simply be averaged with the existing
data during policy derivation. While the regression trajectory would
indeed be pulled in the direction of the new data, and thus thenew
target behavior, the e�ect would be more iterative and less dramatic
than one-shot reuse. In Figure 2.3 (Reusepanel) an illustration is pro-
vided of the correction o�sets accumulated throughout an execution
(top), and the resulting shift in regression signal (bottom).

2.5 Deviating from the Regression Signal

We conclude this chapter with a description of our formulation that
allows for exibility in the trajectory predicted by GMM-GM R.

2.5.1 Formulation

Under GMR, a target poseẑ t
' is predicted with mean �̂ t

' and covariance

�̂
t
'' (Fig. 2.4). We modify the pose prediction by

ẑ t
' = �̂ t

' + � t
� (2.3)

and thus apply to the regression mean o�set� t
� 2 Rm

� t
� =

�
� t

� if � t � � max

� t
�

� max
� t otherwise

(2.4)

� t
� = z t

' � �̂ t
' ; � t = k(�̂

t
'' ) � 1

2 � t
� k (2.5)
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where � t
� is de�ned by the di�erence (� t

� ) between the current robot
pose and regression mean, and whether the magnitude (� t ) of this

di�erence (inversely scaled by standard deviation ( ^� t
'' )

1
2 ) exceeds a

threshold (� max ).

Fig. 2.4 Illustration of our o�set formulation for GMR that allo ws for deviations from the
regression mean (bold vs: dashed lines), showing adaptability with respect starting position.

The amount of allowable deviation is dictated in terms of an accept-
able number (� max ) of standard deviations from the regression mean,
where � max � 0 is a constant parameter set by hand (in our empirical
validations, � max = 2). For execution points (including starting posi-
tions) within this threshold (i.e. within � max standard deviations of the
regression mean̂� t

' ), the execution proceeds with its current pose (i.e.
ẑ t

' = � t
' + � t

� = z t
' ). Execution points outside of this threshold are

�rst projected (e.g. Fig. 2.4, z ' to ẑ ' ) to the envelope (shaded region)
de�ned by � max standard deviations around the regression mean. The
result is more exible learner executions, that take advantage of the
variability present within the teacher demonstrations.
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2.5.2 More Flexible Executions

One gain of this regression formulation is allowing the learner exe-
cution to take a more direct path to the goal, that perhaps deviates
from the regression trajectory but is still within the bound s of what
was demonstrated. Figure 2.4 illustrates that in the absence of o�set
� � , the execution trajectory (dashed line) follows the regression mean
(white trajectory), regardless of whether a more appropriate path (e.g.
a shorter path, such as demonstrationd� ) is contained within the set
of demonstrations. With the o�set, however, the learner execution is
free to follow a more direct path to the goal (bold line), providing this
is within � max standard deviations of the regression mean.

The executions in Figure 2.5 con�rm this behavior with real robot
data. Here the validation task consisted of positioning the7-DoF end-
e�ector of the iCub humanoid robot to grasp a cylindrical obj ect.3

Demonstrations were provided from multiple starting end-e�ector po-
sitions with respect to the object. To explore policy exibility with
respect to acceptable variability in task execution, threepolicies were
developed for comparison:

� : Derived from the demonstration set using standard GMR.

� � : Derived from the demonstration set using our modi�ed version
of GMR with o�set � � .

� �;c : Produced from the tactile correction of � � using TPC.

Table 2.3 provides the lengths of the execution trajectories (as frac-
tions of the distance traveled by policy � ) from 4 starting positions
(s1::s4) for all policies. Indeed, from all positions the incorporation of
o�set � � allows for execution paths that approach the target position
more directly, shown by shorter trajectory lengths (� � vs. � , � �;c vs. � ).
The most dramatic improvement is seen with starting point s4, whose
position is such that the execution must travel explicitly away from the
target position ( � ) to reach the start of the regression trajectory (sr ).
In this case overt backtracking is the result if o�set � � is not employed.

3 Full details of the iCub robot and this experimental domain will b e provided in Section 3.1.
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x1
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a) b) c)

Fig. 2.5 a) Demonstration executions to target position � . b) Executions from starting
positions s1 ::s4 , performed by policy � . Note that executions �rst visit the start ( sr ) of the
regression trajectory. c) Executions from starting positions s1 ::s4 , performed by policy � � ,
which proceed directly to the target position.

Unnecessary backtracking in the absence of� � is a consequence of
time-dependence in the system. With our o�set, the pose predictions
are no longer restricted to follow exactly the regression trajectory, but
are still constrained by the demonstrations in the set. Namely, if the
starting position of the current execution is outside of the initial co-
variance envelope, and thus su�ciently dissimilar to any of the demon-
stration start positions, the execution will �rst snap (pos sibly back-
tracking) to the closest point on the edge of this initial envelope; by
contrast, without o�set � the execution would snap all the way to the
regression mean. The o�set� � formulation therefore tackles to a certain
degree some of the negative consequences of time-dependence, though
time-dependence is still present and at times a drawback.

Table 2.3 Execution Length (from multiple starting positions, as a fraction of the exec ution
length of policy � )

Starting Position � � � � �;c

s1 1 0:69 0:66
s2 1 0:88 0:88
s3 1 0:64 0:67
s4 1 0:35 0:27



3
Empirical Validation

This chapter provides empirical validation of the TPC algorithm. Our
experimental domain involves positioning the end-e�ectors of a high-
DoF humanoid, for interactions with and between a variety of objects.
The performance of policies re�ned under TPC is reported, and suc-
cessful policy reuse also is con�rmed. We furthermore examine shifts
in the regression covariance envelope, which as a result of tactile feed-
back may contract or expand within di�erent dimensions to in crease
respectively execution precision or exibility. A compari son addition-
ally is provided between policies developed under TPC, and those that
receive more teleoperation demonstrations in lieu of tactile corrections.

We have implemented the TPC algorithm on a small 53-DoF hu-
manoid, the iCub (Tsagarakis et al., 2007). Demonstration is performed
via teleoperation by a human teacher, which is non-trivial as simulta-
neous control of 7 degrees of freedom is required to teleoperate a single
arm, 14 to teleoperate both arms simultaneously. Teleoperation is ac-
complished through a joint recording system and a mapping that allows
the human to directly control the motion of the robot arm by mo v-
ing his own arm, during which the robot records from its own sensors
(Fig. 3.1). Sensing units from the commercialXSens joint recording

24
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Fig. 3.1 Teleoperation of the iCub robot by mapping the human joi nt angles, and thus the
human arm movement, to the robot arm.

system are placed on the human's upper and lower arm, and backof
the hand. Each unit contains an accelerometer, gyroscope and inertial
sensing unit, and provides orientation information that we translate
into human joint angles. We then map the human joint angles to the
joint angles of the robot arm, thus accomplishing remote control.

In each of the following experiments, policy development consists
initially of task demonstration, followed by tactile corre ctions. Two hu-
man teachers provide demonstrations and corrections, neither of whom
are robotics novices.

3.1 Experimental Setup 1: Grasp Positioning

For our �rst set of validation tasks, the robot learns to posi tion the end-
e�ector(s) of its 7-DoF arm(s) for uni-manual and bi-manual grasping
of di�erent objects. Closing the hand(s) for grasping is handled by a
static controller.1 Multiple policies are developed to accomplish vari-
ous end-e�ector positioning behaviors, each of which has the learner
position one or both of its end-e�ectors to grasp an object located at
a particular position within the robot-centric coordinate frame.2

1 The focus of the task objective is on end-e�ector positioning, rather th an the grasp itself,
since the iCub hand has no force sensors or tactile feedback in its hands. Note also that
if controlling the hand is a part of the demonstrations, then the jo int space is 15-DoF for
each arm and a more complex teleoperation system is required.

2 The location of an object is �xed with respect to the robot for each develop ed policy.
This construction easily extends to be exible with respect to object positio n however,
by switching to an object-oriented coordinate frame. As our goal was to validate policy
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3.1.1 Evaluation of Policy Performance

The performance of a policy is evaluated according to whether the
end-e�ector is positioned such that the robot is able to grasp the ob-
ject. Positions within the �nal covariance envelope of eachpolicy are
tested for success in grasping, and are selected both systematically and
randomly; in particular, positions are systematically selected along the
boundaries of the covariance envelope, and sampled randomly within
its bounds. The same set of positionsS are employed across all policies,
scaled by the respective dimensions of the covariance envelope for each.

In particular, the set S contains the following 21 positions: the �nal
position of the regression trajectory (1), the extremums ofthe �nal
covariance envelope (14, 2 extremums� 7 pose dimensions) and ran-
dom positions within the covariance envelope (6). The extremum po-
sitions are determined by setting a single dimension to its largest and
smallest values within the covariance envelope, and setting all other
dimensions to their regression mean values (i.e. the regression mean
� the covariance value of the dimension under consideration). We ex-
amine these extremum positions by looking separately at thesubset
of positions corresponding to end-e�ector position (Sp � S; jSpj = 6)
and end-e�ector orientation ( So � S; jSoj = 8). The reason for taking
particular interest in performance at the covariance envelope bound-
aries arises from our exible regression formulation: witho�set � � , the
regression signal is not restricted to follow only the regression mean,
and produces predictions within or at the boundaries of the covariance
envelope. Furthermore, the performance within the envelope (i.e. on
the mean and random positions), tends to be quite good and vary little
across policies.

3.1.2 Analysis of the Covariance Envelope

When the TPC algorithm is in re�nement mode, tactile correct ions
produce new data, which might constrict or expand the covariance en-
velope of the regression signal. When the envelope is constricted, the

re�nement and reuse under TPC, we chose a simpler task representation that wa s not
complicated by the sensing requirements to detect object position.
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resulting motion of the robot becomes more constrained and,assuming
a good regression trajectory, thus also more precise. When the enve-
lope is expanded, the motion becomes less constrained and thus more
exible. Either might be desirable or undesirable within di �erent di-
mensions for a given task.

We will examine changes in covariance by looking at the normalized
standard deviation of the full covariance matrix, as well as the sub-
matrices corresponding to end-e�ector position and orientation. More
speci�cally, the full covariance �̂ is composed of four submatrices

�̂ =

"
�̂ x �̂ qx

�̂ xq �̂ q

#

(3.1)

where subscripts x and q refer respectively to the position and ori-
entation components of the robot pose. The normalized covariance is
computed asj� j

1
2N (where j� j is the determinant of the N � N matrix

�), and is reported for a given full covariance matrix �̂ ( N = 7 ) and its
position and orientation submatrices �̂ x ; �̂ q (N = 3 ; 4).

The position dimensions of the covariance envelope will be examined
in further detail, by looking at the change in envelope shapeat the end
of the motion trajectory. In particular, we consider to what extent
the envelope shape deviates from a sphere, which corresponds to equal
variability in all three position dimensions. We measure this deviation
according ellipsoid level, de�ned as � 1=

p
� 2� 3 where � 2

1 � � 2
2 � � 2

3 are
the eigenvalues of�̂ x . Intuitively, this metric compares the length of
the ellipsoid's longest axis (� 1) to the bounding box (more speci�cally,
the square root3 of the area of the bounding box,

p
� 2� 3) of the cross

section perpendicular to this axis.

3.2 Re�nement

We begin with an examination of policy re�nement. Policies for four
end-e�ector positioning behaviors are developed by �rst demonstrating
the behavior, and then providing tactile corrections.

3 The square root corrects for comparing a length ( � 1 ) to an area ( � 2 � � 3 ).
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3.2.1 Policy Development and Evaluation

We examine the e�ects of re�nement by contrasting a policy before and
after tactile correction, and comparing it also to a policy developed
using teleoperation demonstration exclusively. The object behaviors
considered include positioning (e.g. Fig. 3.2) the right end-e�ector for
grasping a ball (� b) and a cylinder (� c), and positioning both the left
and right end-e�ectors for grasping a tray (� r ; � l ).4 For each object
behavior, three policies are derived (Tbl. 3.1): the �rst from a set of
4 demonstrations, the second from that demonstration set plus tactile
corrections, and the third from that demonstration set plus 4 additional
demonstrations.

Table 3.1 Notational summary for the policies developed to evaluate re�nement.

Ball Cylinder Tray, right Tray, left

4 Demos � 4d
b � 4d

c � 4d
r � 4d

l

4 Demos + Re�ne � 4d0

b � 4d0

c � 4d0

r � 4d0

l

4 Demos + 4 Demos � 8d
b � 8d

c � 8d
r � 8d

l

3.2.2 Performance Improvement

The performance of all policies was found to improve following tactile
re�nement (Tbl. 3.2, � 4d

i vs. � 4d0

i ; i = f b; c; l; rg). Averaged over all
policy behaviors, performance improved from a success rateof 81:0 �
8:7% for the policies derived from 4 demonstrations, to 92:9 � 6:2%
after those policies were provided with tactile corrections.

Tactile re�nement furthermore was found to be more e�ective at im-
proving policy performance than providing more teleoperation demon-
strations (Tbl. 3.2, � 4d0

i vs. � 8d
i ; i = f b; c; l; rg). While performance on

average improved following tactile re�nement, by contrast it declined

4 Note that the demonstrations of tray grasping are performed separat ely for the right and
left arms. While simultaneous operation is feasible technically with our teleoperation sys-
tem, it is di�cult for the teacher to control both arms simultaneously and as a consequence
demonstration quality is lower than it is with separate demonstrati ons.
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Table 3.2 Performance results, comparing tactile re�nement to more teleo peration.

Mean (%) Extremums (%) Random (%) Full set S (%)
Position Sp Orientation So

� 4d
b 100 33:3 75 100 71:4

� 4d0

b 100 83:3 100 100 95:2
� 8d

b 100 33:3 75 83:33 66:7
� 4d

c 100 50 100 100 85:7
� 4d0

c 100 100 100 100 100
� 8d

c 100 50 87:5 66:67 71:4
� 4d

tr 100 50 75 100 76:2
� 4d0

tr 100 66:7 87:5 100 85:7
� 8d

tr 100 50 87:5 83:33 76:2
� 4d

tl 100 83:3 87:5 100 90:5
� 4d0

tl 100 83:3 87:5 100 90:5
� 8d

tl 100 66:7 87:5 100 85:7

with more teleoperation demonstrations, from 81:0� 8:7% to 75:0� 8:1%
(average over all policy behaviors). The likely cause is growth in covari-
ance (discussed in the following section) which, paired with the decrease
in performance, implies that these demonstrations introducedundesir-
able variability into the dataset. In general, providing more demonstra-
tions with our teleoperation system increased the covariance envelope,
as very precise executions were di�cult to achieve. When thelearner
has limited information about the task behavior in many areas of the
execution space, providing more demonstrations typicallyresulted in
an increase in policy performance, despite the growth in covariance.
However, once the policy was su�ciently informed, especially in areas
where precise positioning was required, then the lack of precision in the
teleoperation interface, as well as the noise in human execution, was
more likely to introduce unwanted variability into the poli cy. Changes
in the covariance envelope, and its e�ect on policy performance, are
discussed next.

3.2.3 Adapting the Covariance Envelope

Table 3.3 compares the changes in covariance following re�nement ver-
sus more teleoperation demonstration, by reporting the normalized
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standard deviations matrices. In particular, tactile re�n ement reduced
the standard deviation of the regression signal (� 4d0

vs. � 4d), where
by contrast providing more demonstrations consistently increased the
standard deviation (� 8d vs. � 4d). Given that tactile re�nement also im-
proved policy performance, while more demonstrations negatively im-
pacted performance (Tbl. 3.2), we conclude that re�nement removed,
while more demonstrationintroduced, unwanted variability into the pol-
icy behavior.

Variability with respect to the starting position was present in the
original demonstration sets. The cylinder and tray tasks however also
allowed for some variability in the target position, as the hand may
be positioned for grasping at various locations along the principle axis
of the cylinder or edge of the tray. Variability in target pos ition was
minimally present in the demonstration set, since navigating the end-
e�ector to various grasp locations on the cylinder requireda high level
of precision that was di�cult to achieve with the mechanism u sed for
teleoperation. Through tactile corrections, however, the teacher was
able to convey variability with respect to target position.

Stated more generally, it can be the case that in areas requiring
high precision (e.g. at the target position) a broadened covariance is
desirable along certain dimensions (e.g. along the length of the cylin-
der), while a narrowed covariance is desirable along others(e.g. loca-
tion of the cylinder). Our teleoperation system was unable to isolate
its operation to a single dimension in such high-precision areas, and
so broadened the covariance within all dimensions. By contrast, the
tactile correction interface was sensitive enough to operate within a
single dimension in high-precision areas, and so broadenedthe covari-

Table 3.3 Normalized standard deviation, average over all policy beh aviors. The full co-
variance over all dimensions is shown, as well as the covariance over th ose corresponding to
position only and orientation only.

Standard Deviation (� 10� 2 )
Full �̂ Position only �̂ x Orientation only �̂ q

� 4d 1:4 � 0:3 1:0 � 0:3 2:5 � 0:8
� 4d0

1:0 � 0:4 0:9 � 0:2 1:5 � 0:7
� 8d 2:0 � 0:1 1:5 � 0:2 3:3 � 0:7
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Fig. 3.2 Sequence of tasks learned from policy reuse. Left to right, top to bottom: Demon-
stration of ball-grasping via teleoperation ( � b); reuse of ball-grasping to grasp a cylinder
(� c ); reuse of cylinder-grasping to grasp a tray with the right hand ( � r ); mirroring of
right-handed tray-grasping to grasp a tray with the left hand ( � l ).

ance within only select dimensions.
An increase in exibility within a single dimension is reec ted in

an increase in ellipsoid level. This was seen following tactile corrections
(3:0� 1:1 vs. 2:1� 0:4, for policies� 4d0

i vs. � 4d
i , average overi = f c; r; l g).

Providing more teleoperation demonstrations however was not able to
increase the ellipsoid level (1:9 � 0:5 vs. 2:1 � 0:4, for policies � 8d

i vs.
� 4d

i , average overi = f c; r; l g), though the teacher was in fact making
an e�ort to indicate exibility when appropriate.

3.3 Reuse: E�cient Sequence

We next examine policy reuse, by learning policies for the four object
behaviors of the previous section as asequencethat begins with the
demonstration of a single policy and continues with successive rounds
of policy reuse (Fig. 3.2).



32 Empirical Validation

3.3.1 Policy Development and Evaluation

The sequential policy development occurs as follows. An initial policy
behavior is demonstrated via teleoperation by a human teacher, and the
resulting policy is re�ned using tactile corrections. Beginning with the
demonstrated policy, successive policy behaviors then arebootstrapped
from existing policies, by �rst employing tactile feedback for reuse in
order to generate a new behavior, and following this with re�nement
to improve the behavior.

The demonstrated policy consists of positioning the robot end-
e�ector to grasp the ball. A policy able to grasp the cylinder is then
bootstrapped from the ball policy, which requires a new end-e�ector
orientation. A bimanual behavior to grasp a tray is developed next, in
two phases. First a policy for the right arm is bootstrapped from the
cylinder policy, which requires a shift in end-e�ector orientation and
position. The learned right-arm policy is then mirrored on the left arm.
In summary, eight policies are developed for evaluation (Fig. 3.2):

� b; � 0
b : Ball grasping, derived from 4 teleoperation demonstrations

(� b) and then re�ned with tactile feedback ( � 0
b).

� c; � 0
c : Cylinder grasping, bootstrapped from the reuse (� c) of ball

policy � 0
b and then re�ned ( � 0

c).

� r ; � 0
r : Tray grasping for the right arm, bootstrapped from the reuse

(� r ) of cylinder policy � 0
c and then re�ned ( � 0

r ).

� l ; � 0
l : Tray grasping for the left arm, bootstrapped from mirrorin g

(� l ) the right arm tray policy � 0
r , and then re�ned ( � 0

l ).

We refer to a single instance of learning this complete sequence of
tasks as alearning trial . Three learning trials were performed for our
empirical validations.

3.3.2 Successful Policy Reuse

Prior to receiving tactile feedback for the purpose of one-shot reuse,
none of the original policies were able to perform the adapted tasks.



3.3. Reuse: E�cient Sequence 33

That is, the success rate of the ball policy � 0
b attempting to grasp

the cylinder was 0%, as was the success rate of the cylinder policy � 0
c

attempting to grasp the tray.
Following however tactile feedback and policy derivation according

to the TPC update rule for reuse, the success rate of the adapted
policies improved respectively from 0% to 85:71 � 10:35% and from
0% to 88:89� 8:05% (Tbl. 3.4, � i = c;l ). Successful policy reuse thus was
enabled through tactile feedback. Furthermore, the tactile corrections
provided for re�nement, following reuse, again resulted in improved
policy performance. Note also that for the tray behavior, mirroring the
right-tray policy on the left hand has a higher success rate than reusing
the cylinder policy, which is unsurprising given similarity between the
left and right tray behaviors.

Table 3.4 Performance results of sequential reuse, average of 3 learning t rials.

Mean (%) Extremums (%) Random (%) Full set S (%)
Position Sp Orientation So

� b 100� 0 38:9 � 9:6 70:8 � 7:2 88:9 � 19:3 68:3 � 5:5
� 0

b 100� 0 88:9 � 9:6 100� 0 100� 0 96:8 � 2:8
� c 100� 0 72:2 � 9:6 83:3 � 14:4 100� 0 85:7 � 4:8
� 0

c 100� 0 88:9 � 9:6 92:6 � 7:2 100� 0 93:7 � 2:8
� r 100� 0 66:7 � 0 95:8 � 7:2 100� 0 88:9 � 2:8
� 0

r 100� 0 88:9 � 9:6 95:8 � 7:2 100� 0 95:2 � 4:8
� l 100� 0 83:3 � 16:7 91:7 � 14:4 100� 0 92:1 � 9:9
� 0

l 100� 0 77:8 � 9:6 100� 0 100� 0 93:7 � 2:8

3.3.3 Adapting the Covariance Envelope

The amount of allowable variability in a policy behavior di�e red be-
tween the tasks, as well as the execution dimensions. For example,
compared to the ball policy from which it is bootstrapped, the cylinder
policy allowed for increased variability along the principal axis of the
cylinder, corresponding to the position of the hand on the cylinder.
End-e�ector orientation was more constrained, however, asthe palm
of the hand must roughly align with the cylinder axis.

To realize the di�erences in acceptable variability between reused
policies, during re�nement tactile corrections were employed to indi-
cate areas of desirable exibility. Table 3.5 presents the ellipsoid level
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of the covariance envelope at the �nal position, before and after tactile
re�nement. The comparatively low ellipsoid level of the ball policies
reects the absence of a exible position dimension. That tactile re-
�nement was able to indicate exibility along the axis of the cylinder
is shown by an increase in ellipsoid level (1:6 � 0:4 ! 2:9 � 0:5).

In Figure 3.3 we see that the variability learned for cylinder-grasping
(a, front and side views) then was successfully preserved byone-shot
reuse when adapted for tray-grasping (b, bottom and side views). In
particular, the elongated envelope dimension now lies along the edge
of the tray, corresponding to exibility with respect to the position
of the hand on the tray. The preservation of the covariance envelope
shape, paired with the adaptation of its placement in space,is a direct
result of the TPC mechanism for policy reuse. The preservation of
desired variability is further con�rmed by the high ellipso id level of the
cylinder being maintained in the adaptation from cylinder-grasping to
tray-grasping (Tbl. 3.5, cylinder, after re�nement ! tray-right, before
re�nement).

Tactile re�nement also might produce data that causes the regres-
sion envelope to narrow, in order to reect portions of the target mo-
tion for which more precision is required. Figure 3.4 presents example
trajectories for each task behavior following reuse (Before re�nement )
and then re�nement (After re�nement ), where the covariance envelopes
(or rather, the dimensions within Cartesian space, i.e.�̂ x ) of the �nal
end-e�ector positions are shown as mesh ellipses. Images ofthe robot
at di�erent phases of performing each task, and from variousstarting
positions, are also provided. For all behaviors, re�nementdid indeed re-
duce variability, with one notable exception: re�nement of the cylinder-

Table 3.5 Changes in covariance envelope (within the position dimen sions, �̂ x ) with re�ne-
ment, average of 3 learning trials.

Ellipsoid Level
Before re�nement ( � i ) After re�nement ( � 0

i )

ball 2:1 � 0:3 1:6 � 0:2
cylinder 1:6 � 0:4 2:9 � 0:5

tray, right 3:4 � 0:7 4:4 � 1:2
tray, left 4:4 � 1:2 4:8 � 1:1
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Fig. 3.3 Changes in covariance envelope (within the position dimensi ons, �̂ x ) with reuse.
Cylinder-grasping (a) is adapted via reuse for tray-grasping (b). Callouts for each 3-D plot
show a single dimension projected onto the other two dimensions. Example reproduction
trajectories shown in red.

grasping policy, for which increased variance along the cylinder axis was
permitted and desired.

3.3.4 Comparison to Demonstration

Polices developed under the TPC technique of reuse perform similarly
to policies developed via demonstration, and so the absenceof demon-
stration data for a speci�c behavior does not appear to negatively
impact policy performance. The trend continues following re�nement,
with the TPC reuse policies producing similar or superior performance
to those that received more teleoperation demonstrations.

In particular, for the cylinder policy no di�erence is seen between
the two approaches overall (Tbl. 3.4 � c vs. Tbl. 3.2 � 4d

c , Full set S).
We do however note that reuse outperforms teleoperation on the po-
sition extremums (Sp), while the inverse is true for the orientation
extremums (Sq); the probable explanation is that hand orientation is
more constrainted for the cylinder than the ball, since the hand must
align with the cylinder's principle axis while for the ball n o such align-
ment is required. For a policy built from the reuse of the ball behavior,
this constraint therefore must be indicated through re�nement. For
the right-hand tray-grasping policy, reuse outperforms teleoperation in
all measures (Tbl. 3.4� r vs. Tbl. 3.2 � 4d

r ). In this case the behaviors
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Fig. 3.4 Changes in covariance envelope (within the position dimensi ons, �̂ x ) with re�ne-
ment, for the ball (a), cylinder (b), tray-right (c) and tray-left (d) end-e�ector positioning
policies. Example reproduction trajectories shown in red.

were particularly well-suited for adaptation via reuse. More speci�cally,
cylinder-grasping is exible with respect to where the hand is placed
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on the cylinder, while tray-grasping allows for variabilit y in the posi-
tion of the hand along the edge of the tray. The adapted policyin this
case bene�ts from the preservation of variability (of covariance enve-
lope shape), that is adapted (shifted in position and orientation) to be
appropriate for tray grasping.

3.4 Reuse: Ine�cient Sequence

The previous section noted that the sequence chosen for policy devel-
opment was particularly well-suited for reuse. In particular, a minimal
amount of covariance adaptation via re�nement was required: in the se-
quence of ball! cylinder! tray,right ! tray,left the elongated covariance
envelope was learned once for cylinder-grasping, and then preserved for
tray-grasping with the right and left hands. To examine the dependence
of policy reuse on the selection of a suitable learning sequence, in this
experiment policy development follows a sequence which we expect will
be less e�cient in the context of reuse: tray,right ! ball! cylinder.

3.4.1 Policy Development and Evaluation

In detail, the adaptation sequence consists of demonstrated end-e�ector
positioning to grasp a tray with the right hand, which is re�n ed and
then reused to position for ball grasping. The re�ned ball-grasping pol-
icy is then reused to position for cylinder-grasping, with re�nement
following. We expect this sequence to be ine�cient with respect to
covariance adaptation: in particular, that the elongated covariance en-
velope learned for tray-grasping will be unlearned for ball-grasping,
and then relearned for cylinder-grasping. In summary, six policies are
developed for evaluation:

� r ; � 0
r : Tray grasping for the right arm, derived from 4 teleoperation

demonstrations (� r ) and then re�ned with tactile feedback ( � 0
r ).

� b; � 0
b : Ball grasping, bootstrapped from the reuse (� b) of tray-right

policy � 0
r and then re�ned ( � 0

b).

� c; � 0
c : Cylinder grasping, bootstrapped from the reuse (� c) of ball
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policy � 0
b and then re�ned ( � 0

c).

We again refer to a single instance of learning this completesequence
of tasks as alearning trial , and performed three learning trials for our
empirical validations. Each of the six policies for each learning trial were
evaluated on the 21 test positions inS, as de�ned in Section 3.1.1. A
di�erent human teacher from that of the previous sequence furthermore
was employed to provide tactile corrections for learning the current
sequence.

3.4.2 Policy Performance

The ability to learn successful policies for each behavior,in spite of
the presumably suboptimal sequencing, was con�rmed. Performance
details are provided in Table 3.6.

Similar performance was seen from the tray behavior, which here
was demonstrated but in the e�cient sequence resulted from multi-
ple rounds of reuse, again suggesting that policies do not su�er as a
result of having no explicit demonstrations of their target behavior.
The opposite is suggested by the ball behavior however, which prior
to re�nement did have better performance when demonstratedversus
reused. We conclude therefore that sequencing order can indeed play a
role in the success of reused policies. These results suggest in particu-
lar that a sequencing for which subsequent policies requirebroadening
the covariance, rather than restricting it, is more sound. A de�cit in
performance however may be made up at least in part with re�ning

Table 3.6 Performance results of sequential reuse, ine�cient sequence, average o f 3 learning
trials.

Mean (%) Extremums (%) Random (%) Full set S (%)
Position Sp Orientation So

� r 100� 0 61:1 � 25:5 79:2 � 7:2 100� 0 91:0 � 8:3
� 0

r 100� 0 77:8 � 9:6 100� 0 100� 0 93:7 � 3:8
� b 66:7 � 57:8 50:0 � 16:7 54:2 � 31:5 66:7 � 33:3 57:1 � 26:5
� 0

b 100� 0 83:33 � 16:7 83:3 � 14:4 88:9 � 19:2 85:7 � 14:3
� c 100� 0 83:3 � 0 100� 0 100� 0 95:2 � 0
� 0

c 100� 0 91:7 � 11:8 100� 0 100� 0 97:6 � 3:4
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corrections, and the ball behavior in this sequence saw a larger relative
improvement in performance following re�nement than the ine�cient
sequence (50:1% vs. 41:7% improvement).

The initial performance of the reused ball policy to accomplish the
cylinder behavior was surprisingly high (95:2� 0%); higher than in the
e�cient sequence (85:7� 4:8%), in which the ball policy also was reused
for the cylinder behavior. One possible explanation is simply that di�er-
ent demonstration and correction styles produce di�erent policies, since
a di�erent human teacher was employed for the development ofeach
sequence. A further possibility, supported by the results of the next
section, is that in this sequence the covariance envelope was already
appropriately constrained following reuse with respect tothe location
of the cylinder, and so policy performance did not su�er as much from
imprecise positioning.

3.4.3 Adapting the Covariance Envelope

The evolution of ellipsoid levels (Tbl. 3.7) was less clear to interpret
overall than that of the e�cient sequence. The ellipsoid level increased
with re�nement for the tray behavior, which was expected given the
results and discussion of Section 3.3.3. The absence of change in the
cylinder policy similarly was not surprising given that the initial ellip-
soid level is already quite high. That the ellipsoid level increased for
the ball behavior however, and furthermore that this added exibility
was paired not with a decrease, but rather an increase, in performance
success, was not expected.

In the previous sections we proposed that, unlike the cylinder and
tray policies, the ball behavior did not have a exible dimension along
which positional variability was acceptable. In truth however there are

Table 3.7 Changes in covariance envelope (within the position dimen sions, �̂ x ) with re�ne-
ment, ine�cient sequence, average of 3 learning trials.

Ellipsoid Level
Before re�nement ( � i ) After re�nement ( � 0

i )

tray, right 3:9 � 9:0 6:5 � 11:2
ball 6:5 � 4:1 9:9 � 7:4

cylinder 7:5 � 5:2 7:5 � 5:5
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Fig. 3.5 Changes in covariance envelope (within the position dimensi ons, �̂ x ) with reuse,
ball object within the unintuitive sequence. Callouts for the 3-D pl ot show a single dimension
projected onto the other two dimensions. Note that the foam ball is com pressed when
contacted by the end-e�ector.

arguably two such exible dimensions, since the hand may be posi-
tioned to have initial contact with the ball over a spectrum of posi-
tions and still successfully grasp the object, ranging fromthe inside
to outside of the palm and the bottom of the palm to the �ngerti ps.
The teacher of the e�cient sequence did not exploit either of these
dimensions during demonstration or correction, preferring instead to
demonstrate consistent positioning behavior. By contrast,the human
teacher of the ine�cient sequence exploited the palm-�ngertips dimen-
sion (Fig. 3.5). These results again emphasize that di�ering amounts
of variability can be acceptable in di�erent dimensions, and that to
increase policy performance might not in fact require an increase in
precision.

3.5 Experimental Results and Setup 2: Bimanual Relative
Positioning

For our second set of validation tasks, the robot learns to position
both end-e�ectors of its 7-DoF arms for bimanual object interaction.
Executions begin with the robot holding a basket in its right hand
and object in its left hand. The task is then to position the basket
to be in front of the robot, and position the object so that it m ight
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be dropped into the basket. The position of the right end-e�ector is
de�ned within the robot-centric coordinate frame, while th e position
of the left end-e�ector is de�ned within a coordinate frame centered on
the right end-e�ector.

Fig. 3.6 Bimanual task of placing an object into a basket, demonstrated w ith a ball (left)
and reused with a cylinder (right).

The robot was provided with 4 teleoperation demonstrationsthat
placed a ball into the basket. The learned bimanual ball-basket policy
then was reused to place a cylinder into the basket, whose elongated
body required more clearance when being placed into the basket, as well
as a change in hand orientation. Tactile corrections were provided on
2 executions with the cylinder-basket policy, constituting re�nement.

Figure 3.7 plots the regression signals following both reuse (top)
and re�nement (bottom) for the left and right arms (average over di-
mensions�̂ x 2 R3 and �̂ q 2 R4). Indeed, we observe that corrections
induced a large shift in orientation when the ball-basket policy is reused
for the cylinder object, about midway through the task execution (red
line). Corrections that then re�ned the cylinder-basket behavior en-
couraged this orientation shift to occur even earlier in theexecution
(yellow line) and to a more extreme degree (green line). Though no
real change in position was required for the new behavior, theposition
of the left arm was slightly perturbed as a result of providing the tac-
tile corrections during reuse (upper left plot). These perturbations were
smoothed out following re�nement however (lower left plot). Finally,
note that the right arm received no corrections during reuse, since its
behavior of positioning the basket to be in front of the robot is nom-
inally the same for both objects, and so the regression signal of the
right arm was unchanged by reuse.
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Position dimensions �̂ x Orientation dimensions �̂ q

Fig. 3.7 Mean-centered covariance envelopes of the bimanual behavior mo di�ed by reuse
(top) and re�nement (bottom) for the left (blue) and gray (red) arms, averaged over the
position dimensions �̂ x (left) and orientation dimensions �̂ q (right) of the regression pre-
diction space. Original envelopes as thin lines, post-adaptation envelo pes as thick lines.

Figure 3.8 reports on the relative change in covariance envelope with
tactile corrections. The top graphs plot the (normalized) di�erence in
covariance at each timestep before and after policy reuse, within the
position (left) and orientation (right) dimensions (avera ge over dimen-
sions �̂ x 2 R3 and �̂ q 2 R4). Recall that the right arm received no
corrections, and so there accordingly was no change in its covariance
envelope (dashed line). We see however that the covariance ofthe left
arm (solid line) holding the cylinder broadens (change in covariance
> 0) within the position dimensions to facilitate a larger clearance
over the side of the basket (middle peak around timestep 50, red line).
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Position dimensions �̂ x Orientation dimensions �̂ q

Fig. 3.8 Relative change in covariance envelope with bimanual reuse (top) and subsequent
re�nement (bottom), averaged over the position dimensions �̂ x (left) and orientation di-
mensions �̂ q (right) of the regression prediction space.

Following this, a narrowing (change in covariance< 0) of the envelope
within the orientation dimensions was seen, reecting the need for a
more precise object orientation when entering the basket (large valley
around timestep 75, yellow line).

The bottom graphs plot the (normalized) di�erence in covariance
before and after re�nement of the cylinder-basket policy. Within all
dimensions and for both arms, the covariance envelope at each timestep
was narrowed (change in covariance< 0). The positioning of the right
arm (dashed line) when entering the basket was a particular target for
correction, as reected in the extreme reduction in covariance within
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the position dimensions during the second half of the policyexecution
(after the green line).

These results con�rm that the covariance of the learned policy was
both narrowed and broadened at di�erent points of the execution to
facilitate adaptation to a new task. Moreover, the initial a daptation
that resulted from policy reuse was further encouraged withre�nement.



4
Discussion and Conclusions

The empirical results have con�rmed the successful reuse and re�ne-
ment of policies using tactile feedback. Here we provide discussion on
key aspects of the TPC algorithm, and follow with concludingremarks.

4.1 Discussion

We begin with a discussion of tactile corrections and policyreuse as
employed in this work, noting particular advantages of each. A dis-
cussion also is provided about the presence of variability within the
learned policy, and the choice of weight formulation for corrected dat-
apoints. Following this, some promising directions for future research
are highlighted.

4.1.1 Tactile Corrections

There are many potential sources for suboptimal demonstrations.
While the teleoperation interface employed for demonstration in this
work does allow for control of a high-DoF robot arm, there arelim-
itations. Since the robot arm is controlled by the human moving her
own arm, the issue of correspondence was present, though transparent

45
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from the perspective of the robot. Di�erences in correspondence instead
are adjusted for online by the human while demonstrating. This limi-
tation therefore impacts primarily the human, who furtherm ore must
react to how another body - the robot's body, rather than her own -
executes motions and interacts with the object, possibly asa mirror
image if the human faces the robot. Our approach addresses subopti-
mal demonstration with tactile corrections. Directly touc hing the robot
during execution has the advantage of changing the perspective of the
human, who now directly interacts with the body executing the task
(the robot).

Addressing the issue ofembodiment thus is one feature of the TPC
algorithm that enables the e�ective transfer of informatio n from teacher
to learner. Another is the online nature of the feedback, which allows
the teacher to provide feedback in the exact areas of the state space
in need of policy modi�cation, as they are visited by the learner. The
teacher therefore is not required to revisit those states, or guess as
to their identity. The algorithm capitalizes on the existen ce of dis-
tinct instances during an execution, or equivalently alongan execution
trajectory, at which the policy behavior requires modi�cat ion. Rather
than demonstrate a trajectory in full to provide the modi�ed behavior
information, the teacher needs only to indicate a correction at these
instances. The online aspect means that corrections also target exactly
those areas of the state space in need of policy improvement,which can
address the issue of sparsity in the demonstration set and suboptimal
datapoints.

Finally, we note that in this work tactile corrections were shown to
improve the behavior of policies derived from multiple, distinct, policy
development techniques. In particular, the techniques of task demon-
stration, policy reuse and policy mirroring were all employed for policy
development. While the initial performance of each technique varied,
all were shown to bene�t from tactile correction.

4.1.2 Policy Reuse

That policy reuse is automated is a key strength of the TPC approach:
similar characteristics between the tasks are automatically extracted
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for reuse, and dissimilar ones are adapted through tactile guidance.
In these experiments, reuse involved a single execution by the robot,

during which the human provided corrections. By contrast, teleopera-
tion involved 4 executions while under the control of the teacher. Not
only were the number of executions greater, but the teacher was re-
quired to be actively engaged throughout the entire execution, which
is not the case for reuse when the teacher needed only to be actively
engaged when providing a correction. We therefore come to the quali-
tative conclusion that reuse requiredless e�ort than teleoperation, and
without a sacri�ce in performance.

When examining policy re�nement in the �rst set of experiments,
it was noted that the largest improvement came from re�ning the sole
policy that derived from teleoperation demonstrations (Tbl. 3.2, ball).
The cause was the demonstrated policy's relatively low initial success
rate, in comparison to those policies derived from reuse. This trend
also was observed for comparisons within a single task (Tbl.3.4), where
similar or superior performance was consistently achievedthrough reuse
in comparison to teleoperation. These results suggest thatreuse is more
e�ective at transferring domain knowledge than is teleoperation.

Admittedly these results are strongly tied to our robot plat form
and teleoperation mechanism, as well as to the task behaviors. Though
not the case for any of the tasks under consideration in this work,
presumably there exists a point at which tasks are su�ciently dissimi-
lar for reuse to be e�ective, and thus when teleoperation becomes the
more e�ective tool for transferring domain knowledge. The dissimilarity
between tasks may be roughly gauged by the amount of correction re-
quired for reuse to be e�ective. Another consideration might be whether
the new task requires that the covariance envelope be broadened versus
narrowed; Section 3.4.2 posited that reuse for a behavior that requires
covariance narrowing might be less e�cient than broadening.

4.1.3 Reecting Demonstration Variability in the Policy

This work employed a variant on the GMM-GMR regression formula-
tion, that allowed for deviations from the weighted mean of the demon-
strations. The goal of such a formulation was to allow for exibility in
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the resulting policy execution. A noted bene�t of such exib ility is the
possibility of following a more direct path to the target position. As
a trade-o�, potential detriments included reaching the tar get position
less reliably however.

This formulation may equivalently be seen as using di�erences be-
tween demonstrations as a template by which to infer those parts of
the state space in which the task permits variability in the execution.
Likeminded approaches have aimed to infer the crucial aspects of task
execution by extracting what is similar between multiple demonstra-
tions or demonstrators (e.g. Calinon et al. (2009); J•akel et al. (2010);
Kaiser et al. (1995); Pook and Ballard (1993)).

We highlight that, in the work of this article, acceptable va ri-
ability in the task execution was e�ectively conveyed by the teacher
through multiple modalities; namely, teleoperation and tactile correc-
tions. Moreover, we claim that the modalities were individually better
suited for di�erent areas of the state space. In particular, to indicate
generality in starting position, teleoperation was very e�ective. To pro-
vide generality over starting positions with tactile feedback we expect
would have been quite tedious in comparison, as the tactile interface
is best suited for small iterative movements. By contrast, to indicate
generality at the target position was best provided through the tactile
interface, which was more responsive to precise positioning.

4.1.4 Weighting New Datapoints

We also employed the idea of demonstration variability within our
weight formulation for new datapoints during policy re�nem ent. In par-
ticular, in areas that exhibited little variability during teacher demon-
stration, the new behavior examples produced as a result of tactile
corrections were considered to be very signi�cant. By contrast, in areas
that exhibited much variability during demonstration, the presence of
additional variability in the form of new corrected behavior examples
was more expected, and thus considered to be less signi�cant.

We expect the development of suitable weight functions for cor-
rected datapoints to be an active area for future research. Many for-
mulations are potential candidates, and their suitability depends at a
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higher level on what the designer wants to see come out of the learn-
ing. For example, a separate weighting function might be employed for
re�nement versus reuse, instead of the one-shot formulation employed
in this work. Another learning objective could be to infer the worth of
particular datapoints, according to some utility function , and therefore
not rely on the assumption that corrected datapoints are better exam-
ples (than the demonstrated datapoints) of the target task behavior.

4.1.5 Future Work

There are many promising extensions to this work. From an algorithmic
standpoint, one might consider alternative paradigms for setting the
weight on the inuence of new data on a policy update, as previously
discussed. Correcting within the action space is another area of interest,
where for example human touch indicates changes in joint speed instead
of, or in addition to, changes in pose. Such a formulation would no
longer require that the policy execution be split into two parts (pose
prediction and action selection), though undoubtedly would introduce
nontrivial considerations with respect to implementation.

From an implementation standpoint, to validate TCP on a more
sophisticated tactile sensor, that provides a richer set offeedback sig-
nals, is one direction that we are actively pursuing. Another direction
is to expand the application inuence of the tactile corrections, for
example to correct the entire arm pose in addition to end-e�ector posi-
tion. The formulation for policy derivation also might be im proved, for
example by using a dynamical systems formulation that removes time-
dependence and allows for greater generalization over the state space
(e.g. Khansari-Zadeh and Billard (2010)). Such a formulation further-
more would be amenable to providing corrections within the action
space. The formulation for policy rederivation is a topic for potential
future work as well. The need to keep around all of the trainingdata is a
drawback of our current system, that could be addressed by a formula-
tion that iteratively adapts, instead of completely retrai ns, the learned
model. Partial retraining is another option, where the model is adapted
only in those areas of the state space where corrections occurred.



50 Discussion and Conclusions

4.2 Conclusions

We have introduced Tactile Policy Correction (TPC) as an algorithm
for the re�nement and reuse of policies through tactile feedback from
a human teacher. With tactile corrections, we aimed to improve the
performance of a demonstrated behavior in response to execution ex-
perience, and to mitigate some potential limitations in demonstration-
based learning. Multiple teaching modalities - namely, teleoperation
and tactile corrections - were employed to provide examplesof behav-
ior execution, and we have highlighted the di�ering suitability of each
for providing information about acceptable variability in the task be-
havior at di�erent points during the task execution.

We have validated TPC on a humanoid performing end-e�ector po-
sitioning tasks. Tactile corrections were found to improvethe perfor-
mance of, and thusre�ne , a demonstrated policy. Furthermore, tactile
feedback was shown to enable policy development bootstrapped from
an existing behavior, and thus policy reuse. Comparisons to policies
derived from solely teleoperation demonstration con�rmedpolicy reuse
to be an e�ective mechanism for transferring domain knowledge, and
policy re�nement to be more successful at improving performance. Fu-
ture work will consider alternate algorithmic formulation s for tactile
re�nement and reuse, and furthermore will validate TPC with a more
sophisticated tactile sensor.
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