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Abstract—In robot Programming by Demonstration, current
approaches for learning motion models rely on encoding the
demonstrated trajectories using statistical techniques. In this
paper we propose a method for extracting task constraints from
demonstrated motions and using them directly as continuously
embeddable constraints for controlling the robot. We consider de-
termining the object of interest in each region of the task (frame
of reference), and the contribution of the variable of interest,
position vs. force on each axis. Furthermore the demonstrated
motion can be segmented into meaningful segments based on the
change of the task constraints.

I. INTRODUCTION

In robotic applications a common way of acquiring skills
is Programming by Demonstration (PbD) in which a set of
demonstrated trajectories are encoded using statistical tech-
niques. This method has the advantage of allowing the robot
to deal with complex motions that are hard to be described
analytically, however for achieving a good generalization the
task constraints should also be considered.

This paper addresses the problem of constraint-based en-
coding of high-level tasks, demonstrated to the robot using
kinesthetic teaching. These require the completion of a series
of actions, such as reaching motions, and manipulation. When
analyzing the demonstrated task the difficulty consists firstly
in accounting for the large variability that may exist between
demonstrations and thus deciding which features of the motion
should be reproduced (extracting the task constraints), and
secondly expressing these features in relation to the objects
involved in the task (extracting the frame of reference (RF)).

Based on the extracted constraints, a model of the motion
can be learned in the local frame of reference. The advantage
of having a constraint-based encoding of the task ensures
flexibility in the task representation, and allows the motion
to be reproduced using a single controller and embedding the
constraints at run time.

Furthermore we address the problem of deciding whether
position control or force control is more suitable for each axis.
Usually the control is done in a fixed frame of reference, but
determining the right frame of reference for each part of the
task can simplify the control, such as performing position and
force control on orthogonal axes. In this work we infer the
frame of reference from human demonstrations, as well as the
axis specific suitable control scheme.
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Fig. 1. Encoding a demonstrated task based on extracted constraints and
segmenting it into reaching and manipulation parts when constraints change.

II. RELATED WORK

In our previous work we presented an approach for extract-
ing the frame of reference in a time dependent manner [2],
and a more recent approach allows to build a time independent
representation of the task using dynamical systems [3]. Here
we extend this approach by extracting the importance of
variables used for control, such as force and position, and
also the frame of reference where they apply.

In our current work we build on these existing approaches
in order to extract not only kinematic constraints but also
constraints related to forces to be applied on the objects
involved in the task. Moreover we consider the problem of
segmenting the motion into meaningful sub-parts when the
constraints change.

Common approaches for motion segmentation [12] rely on
either (1) identifying changes in a variable, like zero-crossings
[[1O]]; (2) classification based on existing motion primitives that
algorithms use for prior training [[7, (11} |6]; or (3) clustering
similar motions using unsupervised learning [S)]. The downside
of most of these approaches is the need of prior knowledge
about the task. This may be poor and incomplete according to
real-life situations or at times unavailable. Moreover they are
sensitive to the encoded variables and raise difficulties when
applied to robot control for reproducing the demonstrated task,
requiring additional data precessing, or may be specific to a
particular context [9].



III. EXTRACTING TASK CONSTRAINTS

While the topics of extracting task constraints and perform-
ing segmentation have been addressed previously, our work
proposes a one shot algorithm that extracts all the necessary
information from human demonstrations of complex tasks.
This is designed as a bootstrapping process preceding learning
a task model, and it doesn’t require any prior information about
the type or goal of the motion, see Fig.

The obtained information can be used for both (1) low level
control by learning motion models based on the important task
variables and (2) for high level planning by determining the
right sequence of events in a given situation.

For this we analyze the demonstrated data focusing on the
intrinsic variability that exists between demonstrations. We
assume that the parts of the task where the demonstrator was
coherent (showing consistency between demonstrations) are
the features of the motion that should be reproduced [8].

This approach allows us to include at the level of task encod-
ing all the necessary information for successfully completing
the task. More specifically we infer from the demonstrations
the relative importance of the variables that can directly be
used for control, for each axis, such as end effector position
and forces or torques to be applied. These variables are
expressed relative to the objects involved in the scene. When
reproducing the task we use a generic impedance controller
in which we modulate the stiffness based on the relative
contribution of the control variables determined previously.

All the required information is extracted from the human
demonstrations of the task. The advantage of encoding more
task information in the low level controllers is that if the
objects’ position and orientation change while performing the
task the robot can adapt on the fly using a reactive behavior,
ensuring the successful execution of each of the low level
skills, while the planner can combine the demonstrated skills
to achieve complex tasks.

Furthermore, in the demonstrated motion a segmentation
point can be created segmented when a change occurs in the
extracted constraints. This allows learning different motion or
manipulation models for each part of the task.

This method of performing segmentation has two main
advantages. First using task features ensures that the motion
segments are consistent with the human’s mental model of the
task. Dividing the task into reaching motions and manipula-
tion sub-parts allows the human to easily keep track of the
robot’s performance while the robot can ask for additional
demonstrations of particular segments of the task.

Secondly the individual segments can be used by a high
level planner [[1] for scheduling more complex tasks. While the
problem of using PbD to generate high level planning models
has been addressed before [4], the approach presented here
allows the planner to reorder the task sequence based on the
available objects and actions.

This approach for extracting task features and using them
as continuously embeddable constraints in the low level con-
troller, has been validated on a common kitchen task (grating
vegetables), as discussed in [8].

IV. CONCLUSIONS

In this paper we briefly presented an approach for extracting
task constraints from human kinesthetic demonstrations, that
allows a unitary representation of the skills to be acquired. The
extracted constraints are the frame of reference to be used, and
the contribution of position vs. force in each part of the task,
based on which a weighting factor can be computed. This can
directly be used for reproducing the task using an impedance
controller, as described in [8]].

The robot can learn how to perform a task without prior
knowledge about the type or goal of the task. Also this
approach can contribute to abstract action representation by
adding proprioceptive information acquired through kines-
thetic training. This information is key to successfully exe-
cuting tasks in which the force to be applied matters, such
as grating, cutting, slicing etc. Furthermore the demonstrated
set of motions can be segmented when the constraints change,
dividing the task into sub-parts that a high level planner can
use in executing more complex set of tasks.
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