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Abstract— We present a probabilistic architecture for solving GMM —neartansiormation,, GM
generically the problem of extracting the task constraints 20T T

. . + LA
through a Progr_a_mmlng by D(_amonstratlon (PbD) fre}mewo_rk J ?ff
and for generalizing the acquired knowledge to various situ- L J i
ations. In previous work, we proposed an approach based on 2 T 1 \
Gaussian Mixture Regression (GMR) to find a controller for the Jt ﬁ N[ , {Ag}
robot reproducing the essential characteristics of a skill in joint K7 &
space and in task space through Lagrange optimization. In this =
paper, we extend this approach to a more generic procedure »n
handling simultaneously constraints in joint space and in task @(f
space by combining directly the probabilistic representation - -
of the task constraints with a simple Jacobian-based inverse

kinematics solution. Experiments with two 5-DOFs Katana fig 1. justration of the process used to retrieve a skilldonsidering
robots are presented with manipulation tasks that consist of constraints on different objects in task space (first twosjoas well as

handling and displacing a set of objects. constraints in joint space (last row). The pseudoinversellan matrix.J
is used to project locally the GMM representation of the t@ists in task
I. INTRODUCTION space to a corresponding representation in joint spaceh e different

. . rojected GMMs encoded in joint space, an optimal solutiom tteen be
Robot Programming by Demonstration (RbD) COVergstimated through GMR by multiplying the resulting distribas using the

methods by which a robot learns new skills through humagroduct and regression properties of Gaussian distribstio

guidance. In previous work, we presented an approach to

teach gestures to a HOAP-3 humanoid robot by provid-

ing a set of demonstrations performed in slightly differentndeed, in [1], a metric of imitation performance had to
situations. Through the use dBaussian Mixture Model be analytically derived to find an optimal controller for the
(GMM), the robot could extract autonomously the essentideproduction. In [2], the geometric approach could not be
characteristics of the set of trajectories captured thichg ~ directly applied to more complex robot architectures such a
demonstrations [1], [2]. TherGaussian Mixture Regression  the 5 DOFsKatana robots that we consider here.

(GMR) was used to retrieve a generalized version of the In this paper, we propose to automatize this approach by
trajectories either in joint space (characterized by a $et §0mbining the statistical properties of the Gaussian idistr
postures Changing through t|me) [3], or in task space (Chab.utions together with the local properties of a Jacobian-
acterized by the 3D Cartesian position of the hand relatii@sed solution to inverse kinematics. The approach allows
to the objects in the scene) [2]. To find a controller for thd0 Simultaneously handle constraints on multiple objents i
robot that takes into account constraints both in joint epadask space and in joint space, and can be used generically
and in task space (as well as the kinematic redundancy ¥ different robot architectures.

the humanoid arm), we previously proposed two approacheg: Reiated work

1 th L timization [1]; 2 . .
(1) a method based on Lagrange optimization [1f; and (2) Generic approaches to transfer new skills to a robot are

a geometric inverse kinematics approach for a 4 DOF% that all h bot t tract aut ticall hat
humanoid arm by representing the motion of the arm as tﬂ ose that allow ne robot o extract automaticaly wha

3D Cartesian path of the hand with an additional parametglre the important features characterizing the skill and 1o

representing the elevation of the elbow with respect to ave?earCh for a controller that optimizes the reproduction of

tical plane [2]. Even if these approaches provided Sollstionthese characteristic features. A key concept at the bottom

for the reproduction of a set of constraints in differentadat.Of. thgse approaches is that Of. determlnl'ngrmtrlc of :
spaces, they still lacked generality when the skill reqlie imitation performance. One must first determine the metric,

handle simultaneously task space and joint space variabl&§: determine the weights one mu_st att_ach to reprqducmg
each of the components of the skill. It is then possible to
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reproducing those. To learn the metric (i.e. infer the task set of trajectories and retrieve a smooth generalizedovers
constraints), one common approach consists of creatingoéthese trajectories with associated variabilities, wehtre
model of the skill based on several demonstrations perfdrmelataset is encoded in a compact form learned through the
in slightly different conditions. This generalization pass efficient Expectation-Maximization (EM) algorithm. For the
consists of exploiting the variability inherent to the var$  applications that we consider, the principal advantages of
demonstrations to extract which are the essential compenethis method are: (1) it allows to deal with recognition and
of the task. These essential components should be those tregiroduction issues in a common probabilistic framework;
remain invariant across the various demonstrations. and (2) the learning process is distinct from the retrieval

A large body of work explored the use of a symbolicprocess, where a simple and fast learning process is first
representation to both the learning and the encoding dsskilused to model the demonstrated skill during the phases of
and tasks, see e.g. [5], [6]. The main advantage of a symbotite interaction that do not require real-time computation
approach is that high-level skills (consisting of sequencdi.e. after the demonstrations), and where a faster reigress
or hierarchies of symbolic cues) can be learned efficientlgrocess is then used for controlling the robot in an online
through an interactive process. However, because of timeanner during the reproduction phases. For an exhaustive
symbolic nature of their encoding, these methods rely on raview and comparisons of our approach with the different
large amount of prior knowledge to predefine the importannethods proposed above, the interested reader can refer to
cues and to segment those efficiently. [16].

Another body of work focusses on representing the task To control redundant manipulators in task space, sev-
constraints at a trajectory level to avoid putting too mucleral inverse kinematics solutions based on local resaistio
prior knowledge in the controllers required to reproducenethods capable of handling multiple constraints simulta-
a skill. Following this approach, Udet al [7] use spline neously were proposed, see e.g. [17], [18]. Groclebvel
smoothing techniques to deal with the uncertainty conthing19] proposed an alternative strategy for computer graphic
in several demonstrations of motion performeddimt space  animation of avatars by resolving the redundancy of the
or in task space. TheMimesis Model [8] follows an approach inverse kinematics problem through the observation of a set
in which aHidden Markov Model (HMM) is used to encode of human motions which guided the search of a solution
a set of trajectories, and where multiple HMMs can be useithat looks similar to natural human gestures. Our approach
to retrieve new generalized motions based on a stochast@lows in essence a similar strategy by combining several
process. In [9], the variability across the demonstrationsonstraints expressed both in task space and in joint space
made by different demonstrators is used to quantify thand by optimizing locally a cost function in the null space
accuracy required to achieve Rick & Place task. The of the Jacobian matrix [20]. In our approach, the search
different trajectories form a boundary region that is theffior an inverse kinematics solution is facilitated by theruse
used to define a range of acceptable trajectories. In [104ho implicitly provides in his/her demonstrations possibl
a set of sensory variables is acquired by the robot whesolutions for the resolution of the task, thus restrictihg t
demonstrating a manipulation task consisting of arrangingearch space of the robot for inverse kinematics solutions.
different objects. At each time step, the mean and variahce ©o do so, the robot first computes several inverse kinematics
the collected variables are computed and stored by the.robeolutions solving the different constraints in task space
The sequence of means and associated variance is then ueh combines these constraints with the ones represented
as a simple generalization process, providing respegtizel initially in joint space.
generallzed_ trajectory and f'issomated const_ramts. Tas-dr ll. PROBABILISTIC FRAMEWORK
backs of this approach are: (1) the system is memory-based i o )
and requires to keep all historical data, which can lead to/x Encoding, generalization and reproduction
scaling-up problem (see the rapid development of sensors fo Table | presents the procedure for the encoding of the
humanoid robots exploiting various modalities); (2) as RbBkill through cross-situational observations, where thset
considers only a few demonstrations of the task, using gmptan represent either the joint angle trajectories of th@tob
statistics is usually not sufficient to guarantee the gaitera £ = 6, or the position of the end-effectqf = = in the
of trajectories that are smooth enough to be replayed Wyartesian space with respect to the objects detected in the
the robot; and (3) the constraints concerning the cormiati scene. By using this encoding method, the constraints kn tas

across the different variables are not extracted. space are computed by considering the objects detected by
the robot in its environment. The constraints associateld wi
B. Proposed approach the position of the end-effector with respect to an object

Several regression techniques based on a probabilistice thus represented by the trajectorié¢® and associated
representation of the dataset suchLasally Weighted Re-  covariance matrice§*(™). Similarly, the constraints in joint
gression (LWR) [11], [12] or Gaussian Process Regression ~ space are represented Byand $¢. These constraints can
(GPR) [13] were proposed in robotics to generalize over a sbe mutually exclusive in the robot's workspace, i.e., the
of demonstrations. Our approach follows a similar strateggeneralization in joint space does not necessary coinditfe w
by using Gaussian Mixture Model (GMM) and Gaussian the generalization in task space. To find a controller for the
Mixture Regression (GMR) [14], [15] to respectively encode robot satisfying several constraints simultaneously, hent



TABLE | TABLE Il

PROBABILISTIC ENCODING OF THE TASK CONSTRAINTS AND REPRODUCTION OF THE SKILL BY DETECTINGN OBJECTS WITH
GENERALIZATION THROUGH GAUSSIAN MIXTURE REGRESSION(GMR). INITIAL POSITIONS {o(™}N_ .
« The dataset = {¢,;}V_, is defined byN observationst; € RP of OFFLINE PROCESSING AND INITIALIZATION

sensory data changing through time, where each demonstration is temporally
aligned and rescaled to a fixed durati@hthrough Dynamic Time Warping
(DTW) as described in [1]. Each datapoi§} = {tj,gf} consists of a
temporal valuet; € R and a spatial vectog? € R(P-1), 0o = 0o, w0 = f(fo).
e The dataset is first modelled by a&Gaussian Mixture Model (GMM) of K
components, where the optimal number of components is estimated thrpbugh
Bayesian Information Criterion (BIC) [21]. Each datapoing; is then defined LOOPFORn =1 — N
by its probability density function

« Initialization with the starting posture and the starting positionhef end-
effector (f is the direct kinematics function)

LOOPFORt; =0 — T

« Compute the expected-values (or velocities) and associated covariange
K matrices for the constraints relat%e to object( represents the identity
)= 7 N(Es: e, S), matrix, « = 0.5 is a weight factor,J' is the pseudoinverse of the Jacobial
P(&) 1;::1 B N (&5 D) matrix computed withJ" = (J'J)"1J", and I — Ji(8,)J(6;)
represents the projection in the null space of the Jacobian matrix)
wherer;, are prior probabilities andV'(ux, X5 ) are Gaussian distributiong N
defined by centerg.;, and covariance matriceE;, whose temporal and Ae;i)l = JT(GJ)A(L‘;i)l +a (I - JT(GJ-)J(GJ)) (0541 —05),
spatial components can be represented separately as

. (n

where A$§1>1 = (o™ + acj+>1) -z,

pe = {pp e}, D= ( S ke ) (n) i sa(n) (gt T
ko Pl o EET EES Ej+1 = J'(0;) Ej+1 (J (9.7)) .
« For each componerit, the expected distribution Qf]s given a temporal value| END LOOP n
t; is defined by « Compute the expected\-value (or velocities) and associated covariance
s S 25 &SS matrix in joint space
p(fj [tj, k) = N(E7 €2k ), } ) ) )
“ _ N+1) _ 4 N+1) _ &6
& = i AZTEED TN - e, A0y =0 =0, I =2
ifs = Efs - EfT(E:T)flEZS. « Compute the new posture (and associated covariance matrix) by evaluating the

product [TNA}! N(Aeﬂ)l, E;"jr)] ), which represents the joint probability

« By considering the complete GMM, the expected distribution is defined py of the different constraints considered

3 3 MG N+1<>171 SR () =1 4
N ) = . P n — n - n
P(fj [t5) kzlﬂkd (5]1&]97 k) Ojt1 = 0;+ (Z(Eg‘+l) > (Z(ZJ-H) A0j+1> s
= n=1 n=1
where 8,.; = p(kl|t;) is the probability of the component to be N+l (n) 1 -t
responsible fott;, i.e., iy = ST (1)
n=1
p(k)p(tlk)  mN(sei, ZET

Br,; = - ~ = .
LXK plp(tsld) X mN (5T 2TT)
e By using the linear transformation property of Gaussian distributions,| an
estimation of the conditional expectation ef given t; is thus defined
by p(£F[t;) ~ N(£5,559), where the parameters of the Gaussian
distribution are defined by °

« The new position of the end-effector is then defineday.1 = f(0;41).

END LOOP t;

local transformation remains valid for the span of dataeepr

K K
=3 prsél, 79=3" 8, 505 sented by the covariance matrix of the Gaussian distributio
k=1 k=1 [22]

« By evaluating{€;, 55} at different time steps; € [0, T}, a generalized Eqg. (1) computes a trade-off based on the variabilities ob-
form of the trajectoriet = {t;, £’} and associated covariance matrices  served during the demonstrations to determine the respecti
X = {¥7 i th traint; | the task th b . . .

Somputed | CPresening the constiaints along the fasic can then B¢ ye1evance of the constraints in joint space and in task spice

one wants to use a controller satisfying the constraintsii j
space only, (1) can be replaced By, = 6; + A@ﬂfl)
Similarly, if one wants to use a controller satisfying the

propose to use the probabilistic properties of the GaUSSi%antraints in task space for a specific object(1) can be
distributions to compute an appropriate trade-off during t replaced byd, ,; — 6, + Ag™)
J )

inverse kinematics process. AR
The reproduction procedure is described in Table Il and 1. EXPERIMENTAL SETUP

illustrated in Fig. 1 For the firs_t part of the _reprodugtior) The setup of the experiment is presented in Fig. 2. Two 5-
process, a pseudoinverse Jacobian method with optimizalig g k atana robots fromNeuronics are used for the exper-
in the null space [20] is used to follow a desired path ifane A sixth motor controls the opening and closing status

Cartesian space while keeping the motion in joint space &g e gripper, which is generated through a binary signal
close as possible to the demonstrated joint angle rajestor gonerajized over the multiple demonstrations as desciibed

Note that by projecting the Gaussian distribution from tas ]. Each motor is equipped with encoders which allows the

tiser to move the robot manually while registering joint angl
PH¥ormation (see Fig. 2). During this process, the positibn
the end-effector is also computed through direct kineraatic
IMatlab sourcecodes for the encoding and reproduction pseseare Two dn‘ferent skills are ConS|d_ered in the experiment,
available fromht t p: / / www. cal i non. ch. namely setting the table by grasping a glass on a shelf and

function by the locally linear transformatiofi, i.e., that the



Five demonstrations starting from Reproduction with a new initial
different initial positions situation

TASK 1

TASK 2

Fig. 3. Left: Five demonstrations for the two tasks in 3D Cartesian
space. For the first task, the initial positions of the glakxqd on the
shelf are represented with '+ signs. The initial positiafshe coaster on
the table are represented with 'x’ signs. For the second, tdek initial
Fig. 2. Top: Kinesthetic demonstrations of the two tasks considered, lyamepositions of the glass (covering the coaster) are repredamith '+’ signs.
grasping and placing a glass on a coadtt)( and grasping and emptying a Right: Reproduction of the skill for new situations (bold '+ and signs),
glass tight). Bottom: Reproduction of the skill by the two robots where the by combining constraints in joint space and in task space. Cagesian
initial positions of the objects are tracked by a stereoscujsion system. trajectories are represented in the robot’s frame of retergsee Fig. 2),
where the dots indicate the beginning of the motions.

placing it on a coaster, and clearing the table by graspiag th

glass from the table and emptying the glass in a basin. Fdhen, the ones directed toward the coaster predominate. We

the first task, two objects are tracked by the robot (the glag§e that the controller determined by the system smoothly

and the coaster), where the positions of the two objects camitches from the generalized movement directed toward the

vary. For the second task, only one object is tracked by tH#lass (see e.gr; at time steps 200-500) to the generalized

robot, i.e., we assume that the glass covers the coaster dngvement directed toward the coaster (see e;gat time

that the basin is at a fixed position in the robot's workspacéteps 700-1000). For the second task, the trajectorietveela

A stereoscopic vision system based on two webcams & the glass are first highly important (to reach for the giass

320 x 240 pixels is used to track the set of objects in 3DCartesian space), and then give way to a controller satigfyi

Cartesian space based on tracking/®bCr color space of Cconstraints in joint space (to empty the glass by tilting\We

colored patches attached to the objects (d@lyandCr are See that the controller smoothly switches from a controller

used to be robust to changes in luminosity), where eaddhere constraints in task space are important (seefe gt

object to track is pre-defined in a calibration phase. time steps 200-400) to a controller where constraints int joi
For the first task, five demonstrations bf-dimensional SPace are important (see etg.at time steps 600-1000).

trajectories are collgctedS (vanal_algs descrlbmg the J(_)l_nt V. DISCUSSION AND EURTHER WORK

angles and® x 3 variables describing the relative position

of the end-effector with respect to the two objects), where During the reproduction process (see Table i), the gen-

each trajectory consists af00 points. For the second task, eralized joint angle trajectorie are used twice: (1) in the

only 8-dimensional trajectories are considered as only orfelll space of the Jacobian matrix to optimize the inverse

object is used. kinematics process when considering the constraints ln tas
space; and (2) to compute the final controller in joint space
IV. EXPERIMENTAL RESULTS by taking into consideration all the constraints. Note that

Fig. 3 left shows the five demonstrations for the twoin the null space, the use @ only acts as an additional
tasks. Figs. 4 and 5 show the extracted constraints for tloptimization of the IK process (if possible), while the com-
two tasks. Fig. 3right shows the reproduction for a new putation for the final controller considers each constrast
situation (new initial positions of the objects), duringieln relevant to the reproduction of the skill (weighted by the
the essential features of the skill are reproduced. Figo@/sh variabilities observed during the demonstrations).
how the constraints in joint space and task space influenceThe proposed approach presents advantages over our pre-
the reproduction of the skill. For the first task, the actionsious attempts at combining several constraints encoded in
directed toward the glass are first of the most importancelifferent data spaces through a GMM/GMR representation.



Task space, relative to the glass Task space, relative to the coaster Joint space
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Fig. 4. Automatic extraction of the constraints for TASK 1€itorresponding joint angles and frames of reference areteelgn Fig. 2), both in task space
(the first two columns represent the constraints on the diffieobjects observed) and in joint space (third column). GM¥th 4 Gaussian components
are found to efficiently encode the skill (for each repreaton). The associated GMR representation is also depittledsee that the trajectories relative
to the glass are highly constrained between time steps 20G@ddi.e., when reaching for the glass. The trajectoriestivel to the coaster are highly
constrained at the end of the motion, when placing the glagbewroaster.

Compared to the use of Lagrange optimization to find a

metric of imitation performance [1], the proposed method

does not require to analytically derive the cost functidris |
GMM Task space GMM Joint space then more generic and remains statistically sound. Cordpare

s : ‘ to the geometric inverse kinematics approach used in [2],

64@?—7 [3], the approach proposed here can be extended to different
I e 0 60 robot architectures. Moreover, this direct computation ap
1 ! : proach allows to compute the resulting constraints (1) for
< 0%'5@_"‘ the final controller in the form of a covariance matrix by
T we e T80 1000 using the product properties of Gaussian distributions.

We presented applications where the different trajectorie
were encoded in a Gaussian Mixture Model with up to 5
dimensions, which can be very efficiently handled by the
Expectation-Maximization learning process. However, whe
using more complicated robots or a higher number of vari-
ables to describe the skill, it might be important to conside
the use ofPrincipal Component Analysis (PCA) or Inde-
pendent Component Analysis (ICA) as a preprocessing step
that can be combined easily with the proposed probabilistic
encoding and reproduction procedures, as demonstrated in
[1], [23].

For the experiments presented here, the complete learning
and inverse kinematics process (by usiMgtlab) took
less than one minute and is thus satisfying for a teaching
application where the demonstration phase and reproductio
phase are separated. Further work aims at: (1) investgatin
more complex interactions where the demonstrations and
reproductions are more tightly intertwined; (2) couplirng t
proposed learning approach with a dynamical controller to
Fig. 5. Automatic extraction of the constraints for TASK 2,em GMMs D€ robust to perturbations and changes in the environment
with 5 Gaussian components are found to efficiently encodeskile(for ~ [24]; and (3) extending the approach to a more complex

each representation). We see that the trajectories relttivthe glass are ; ; ; ;
highly constrained between time steps 200 and 400 (when irepdbr scaffolding process and to bimanual coordination [25].

the glass). Then, the trajectories in joint space are morst@ned at the

end of the motion, when emptying the glass in the basin by usipeaific VI. CONCLUSION

gesture. The snapshots below the graphs illustrate a regiod attempt by

automatically selecting a controller that smoothly repreduthe extracted We presented a probabilistic framework to extract au-

constraints. tomatically the essential features characterizing a dkill
handling constraints both in joint space and in task space,
and proposed an inverse kinematics method to re-use the
learned skill in new situations. We then demonstrated tinou
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Fig. 6. Reproduction attempts for the two tasks by using theaeted [15]
constraints either independently or simultaneously. Thgdtories insolid
line show the final reproduction attempt by considering the camds in  [16]

task space and in joint space simultaneously. The trajestamidash-dotted

line consider only constraints for the first object in task spadee ones

in dotted line (for the first task) consider only constraints for the second17]
object in task space. The onesdashed line consider only constraints in
joint space. We see that the final controllesahid line smoothly reproduces
the essential features of the skill by adapting the exttactestraints to the
new situation. For the first taskp and () correspond respectively to the
time when the robot grasps the glass and discards it on théecoBer the
second task®@ and (@ correspond respectively to the time when the robot
grasps the glass and empties the glass by tilting it apptepria [19]

(18]

. [20]
experiments performed on twidatana robots that the ap-

proach could be applied successfully to learn generically n
manipulation skills at a trajectory level by generalizingeo
several demonstrations and by extending the learned skift®]
to new positions of objects.

[21]
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