
Donut as I do: Learning from failed demonstrations

Daniel H Grollman and Aude Billard

Learning Algorithms and Systems Laboratory, EPFL

{daniel.grollman, aude.billard}@epfl.ch

Abstract— The canonical Robot Learning from Demonstra-
tion scenario has a robot observing human demonstrations of
a task or behavior in a few situations, and then developing a
generalized controller. Current work further refines the learned
system, often to perform the task better than the human could.
However, the underlying assumption is that the demonstrations
are successful, and are appropriate to reproduce. We, instead,
consider the possibility that the human has failed in their
attempt, and their demonstration is an example of what not
to do. Thus, instead of maximizing the similarity of generated
behaviors to those of the demonstrators, we examine two meth-
ods that deliberately avoid repeating the human’s mistakes.

I. INTRODUCTION

One current problem in robotics is that while modern

robots are physically capable of performing many useful

tasks (e.g. heart surgery, space-station repair, bomb disposal),

they are only able to do so under constant supervision and

control of expert human operators or in highly engineered

environments. That is, what are lacking are autonomous

controllers for performing these skills in novel situations

without human oversight. Robot Learning from Demonstra-

tion (RLfD) is an attempt to fill this void by enabling new

robot controllers to be developed without requiring analytical

deconstruction and explicit coding of the desired behavior.

Currently, RLfD typically first collects a set of exam-

ples, wherein a human user demonstrates acceptable task

execution. These examples are then somehow put into the

robot’s frame of reference, and a generalized control policy is

extracted. This policy can be improved via further interaction

with the human, or by optimizing known or inferred criteria.

Many different approaches along these lines exist [1],

[2], and as the field coalesces, overarching formalisms are

being developed [3]. We note that early work was typically

in discrete state and action spaces and took the human

demonstrations as indicative of correct or optimal behav-

ior. However, as recent research has shifted to continuous

domains, there is more focus on optimizing the learned

behavior beyond the demonstrator’s capabilities.

In this paper, we propose to take the next logical step.

That is, the initial assumption (which was valid in small,

finite, discrete spaces) was that human demonstrations were

optimal and the robot was told to “Do as I do.” Currently,

this assumption is being relaxed to allow improvement over

the demonstrations, which still positively bias the robot:

“Do nearly as I do.” We here consider the situation where

the humans are not only sub-optimal, but incapable of

performing the task, and their demonstrations must be treated

in part as negative biases: “Do not as I do.”

Fig. 1: An overview of our approach. After modeling col-

lected failed demonstrations as in regular RLfD, we generate

exploratory trajectories by assuming that when demonstra-

tions disagree, they actually indicate what not to do. We

update the model after exploration and repeat until successful

task performance or trajectory convergence. In all figures

distributions are shown ± 3 standard deviations.

II. RELATED WORK

Of course, a human’s failed demonstrations are not entirely

devoid of useful information. We assume that the humans are

attempting to perform the desired task, and not performing

unrelated motions. Failure is then due perhaps to lack of

skill or effort. We draw inspiration from work with humans

showing that infants are able to successfully perform tasks

that they have only seen failed examples of [4].

In RLfD, the most closely related work assumes the

demonstrations are correct, yet suboptimal, and incorpo-

rates Reinforcement Learning (RL) to optimize the learned

system. For example, the PoWER algorithm uses demon-

strations to initialize a policy, and then improves it with

respect to a known reward function by performing ex-

ploratory rollouts, perturbing the the current policy by state-

dependent noise [5]. One drawback is that if the initial

demonstrations are very suboptimal (such as failures), this

and similar techniques may be unable to locate a successful

policy. By acknowledging the failure of demonstrations and

deliberately avoiding them, we here provide an alternate

means of generating exploratory trajectories.

Alternatively, if the reward function is not known, or the

user does not wish to specify one, Inverse Reinforcement

Learning (IRL) techniques can estimate one from the demon-

strations themselves [6]. The current state-of-the-art requires

that the reward function be linear in the feature space, so

feature selection is very important. Further, they allow for

the inclusion of prior information, indicating which features

are the most important or what their values should be. By

providing ‘correct’ values for some features, the system is

told, in effect, to ignore certain aspects of the demonstrations.

We note here that ignoring portions of the demonstrations is

not the same as actively avoiding them.

The above techniques learn an initial model from demon-

stration, and improve it on their own. Alternate work contin-

ues to use the demonstrator during the learning process, to

provide more information. For example, corrective demon-

strations may be provided when the learned policy acts

inappropriately [7], [8]. However, these techniques assume

that the demonstrator is able to perform what should have

been done, and that either the training was ambiguous, or

the learning was incorrect. Instead users may simply indicate

how the behavior should change using a set of operators, and

therefore train a system that outperforms themselves, without

needing to explicitly specify a reward function [9].

These approaches all assume that the initial demonstra-

tions are basically correct, and that issues remaining after

learning are due to stochastic humans or improper learning

(poor generalization, simplified models, etc). Fully failed

demonstrations are usually discarded, either explicitly by

researchers, or implicitly in the algorithms themselves. We

believe that these failures have instructive utility and can

place constraints on what should and should not be explored.

III. METHODOLOGY

We compare approaches to RLfD of motion control based

on Dynamical Systems (DS) [10] and Gaussian Mixture

Models (GMM)[11]. Taking the state of the robot, ξ and

its first derivative ξ̇ to be D-dimensional vectors, a demon-

stration is a trajectory through this state-velocity space,

x
n = {ξn

t , ξ̇n
t }T n

t=1. From a set of N demonstrations X =
{xn}N

n=1 of possibly different lengths (T i 6= T j , i 6= j), we

approximate the distribution of observed state-velocity pairs

with a GMM where the probability of a given pair is:

P (ξ, ξ̇|θ) =

K
∑

k=1

ρkN (ξ, ξ̇;µk,Σk) (1)

N is the standard normal distribution and θ =
{K, {ρk, µk,Σk}K

k=1} are the collected parameters, termed

the number of components (positive integer) and the priors

(positive real, sum to 1), means (2D real vector) and covari-

ances (2D × 2D psd matrix) of each component.

To deal with mismatches in the size of the state and

velocity spaces, we first normalize our data such that all

dimensions are mean zero and have unit variance. We then

fit these parameters using a combination of the Expectation-

Maximization algorithm [12] (initialized with Kmeans) to

maximize the probability of observed data for a given

value of K, and the Bayesian Information Criterion [13],

a penalized likelihood method, to select K itself. As K is

discovered in a data-driven fashion, our overall technique

can be considered nonparametric – the total number of

parameters used to model the data is not set apriori.

To compute ξ̇ for a given ξ we require the conditional:

P (ξ̇|ξ, θ) =

K
∑

k=1

ρ̃k(ξ, θ)N (ξ̇; µ̃k(ξ, θ), Σ̃k(θ)) (2)

µ̃k(ξ, θ) = µk

ξ̇
+ Σk

ξ̇ξ
Σk−1

ξξ (ξ − µk
ξ) (3)

Σ̃k(θ) = Σk

ξ̇ξ̇
− Σk

ξ̇ξ
Σk−1

ξξ Σk

ξξ̇
(4)

ρ̃k(ξ, θ) =
ρkN (ξ;µk

ξ ,Σk
ξξ)

∑K

k=1 ρkN (ξ;µk
ξ ,Σk

ξξ)
(5)

Note that Σ̃k does not depend on the current state. For clarity

we drop the functional forms of the conditional parameters.

This conditional distribution over ξ̇ is itself a GMM, with

an overall mean and variance:

Ẽ[ξ̇|ξ, θ] =
K

∑

k=1

ρ̃kµ̃k (6)

Ṽ [ξ̇|ξ, θ] = −Ẽ[ξ̇|ξ, θ]Ẽ[ξ̇|ξ, θ]⊤+
K

∑

k=1

ρ̃k(µ̃kµ̃k⊤+Σ̃k) (7)

As illustrated in Figure 1, our general approach is to:

1) Collect a set of failed demonstrations (X).

2) Build a model of what the demonstrators did (θ).

3) Use the model to generate a tentative trajectory that

explores near the demonstrations (x∗).

4) Run x
∗, update θ.

5) Repeat steps 3-4 until success or convergence.

Step 3 is the key, where we generate full trajectories from

an initial state (ξ∗1) by predicting a velocity, updating the state

with that velocity, and repeating: x
∗ = {ξ∗t , ξ̇∗t }T∗

t=1, ξ
∗
t+1 =

ξ∗t + ξ̇∗t . Prediction stops when ξ̇ = 0 or a predetermined

time-length (1.5 times the longest demonstration) is passed.

With faster computation we could generate velocities online,

to react to perturbations and noise in the actuators. We use

a low-level high-gain PID controller to avoid these issues.

For step 4, there are multiple ways to update the GMM

incrementally [12]. A naive approach is to retrain the GMM

on all of the available data. However, computation grows

with the number of datapoints. We instead sample a fixed

number of points from the current GMM, weight them to

represent the total number of data points, and then combine

them with the new trajectory for re-estimation. Note that K
is unchanged in this approach.

Below we describe our different techniques for predicting

a velocity for a given state from learned models. They are

compared graphically in Figure 2. Our main intuition is that

while the demonstrators are not succeeding, they are at least

attempting to (roughly) perform the task. Thus, exploring

in the vicinity of the demonstrations, while avoiding them

exactly, may lead us to discover a way to succeed.

−10 −5 0 5 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

ξ̇

P
(ξ̇
|ξ)

GMM(ξ̇|ξ, θ)

DMM(ξ̇|ξ, θ)

ξ̇MEAN

ξ̇BAL

ξ̇DNT

ξ̇MIN

ξ̇MAP

Fig. 2: Illustration of velocities generated by the different

techniques introduced for a particular state. The dashed

distribution is the GMM, and the solid distribution is what

arises after replacing all Gaussians with Donuts.

A. Approach 1: Balanced Mean

A standard way to use GMMs in RLfD is to assume that

the demonstrations are optimal, but corrupted by mean-zero

Gaussian noise. Thus the expected value of the conditional

distribution (Equation 6) estimates the noise-free function:

ξ̇MEAN = Ẽ[ξ̇|ξ, θ] (8)

However, in our scenario this assumption does not hold.

Particularly, as the demonstrations are failures, we do not

assume they are Gaussianly distributed around success, and

thus do not expect their mean to succeed. Further, incorpo-

rating the mean of a GMM back into the model will not lead

to improvement, as the mean itself becomes more likely.

As an alternative we employ a balanced mean approach,

which allows for improvement over iterations. We divide X

into two classes: X
+ and X

−, reasoning that demonstrators

that fail do not blindly repeat themselves. Rather, they try to

correct themselves, and may end up failing in a different

fashion. A binary division is the simplest case, but the

approach may scale to multiple classes and dimensions.

From these two classes, we derive two GMMs parame-

terized by θ+ and θ−. Our overall estimated velocity is a

weighted average of the means from each class:

ξ̇BAL = αẼ[ξ̇|ξ, θ+] + (1 − α)Ẽ[ξ̇|ξ, θ−] (9)

where α ∈ [0, 1] is a mixing ratio. We set α = 0.5, but in

the future may make α state-dependent, perhaps measuring

the relative variance in the predictions from the two classes.

The generated trajectory is necessarily in between the

means of the two classes, so this approach requires that the

demonstrations ‘span’ the area where correct behavior lies.

If the classes are balanced to begin with (same number of

demonstrated points), then Equations 9 and 6 are the same.

However, as the generated trajectories are incorporated,

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ε = 0

ε = 0.25

ε = 0.5

ε = 0.75
ε = 1

ξ̇

P
(ξ̇
|ξ)

N (ξ̇|ξ, 0, 1)

D(ξ̇|ξ, 0, 1, ǫ)

Fig. 3: The donut pseudo-inverse has an additional explo-

ration parameter that determines how far away the peaks are

from the base distribution.

only one class (and its mean) is updated at each iteration,

shifting the overall mean. By assumption correct behavior

lies somewhere between the two classes, and this technique

approaches it in a fashion similar to that of binary search.

A further advantage of this technique is that when the

classes ‘agree’ (produce nearly the same mean) then ξ̇BAL ≈
ξ̇MEAN. This situation corresponds directly with assuming

that the demonstrations are noisily correct1. Thus, overall,

this approach will follow the demonstrations when the two

classes agree and explore in between the data when the two

classes disagree, which follows from our intuition that the

demonstrations, while failures, are not all wrong.

B. Approach 2: Donut MAP

An alternate technique for generating velocities from a

GMM is to use the Maximum a posteriori (MAP) value:

ξ̇MAP = argmaxξ̇P (ξ̇|ξ, θ) (10)

Doing so makes sense when operating in non-convex spaces,

where the combination of two successful demonstrations may

not be appropriate. For example, turning left and turning

right at a cliff’s edge are both viable, but their convex mean

(walk forward) is not. Similar to the standard mean, we

observe that using the MAP incrementally will lead to rapid

convergence and minimal improvement. However, with our

assumption that demonstrations are indicative of what not to

do, an alternate possibility is to generate those trajectories

that are least likely under the model of the demonstrations,

guaranteeing that we perform not-like the users:

ξ̇MIN = argminξ̇P (ξ̇|ξ, θ) (11)

Two issues arise when using the minimum likelihood

technique: 1) local minima only exist between the demonstra-

tions, beyond the data the conditional probability continues

1Another possibility is that there is a bias in the demonstrations.

(a) FlipUp (b) Basket

Fig. 4: Our robot tasks. FlipUp: get the foam block to stand on end, Basket: Launch the ball into the basket. Shown are

successful trajectories learned with the Donut MAP approach from 2 initial failed demonstrations.

to decline. 2) local minima are always off of the data, so

even when demonstrations are in agreement we avoid them.

We address both issues by instead finding a maxima of

a mixture of pseudo-inverses of the Gaussian distribution.

Each individual component of the GMM (N (ξ̇; µ̃k, Σ̃k))
is replaced by its pseudo-inverse, the donut distribution

(D(ξ̇; µ̃k, Σ̃k, ǫ)), resulting in a Donut Mixture Model

(DMM). The additional exploration parameter (ǫ ∈ [0, 1])
allows us to generate a spectrum of distributions whose peaks

smoothly move from that of the underlying base distribution

to a configurable maximum distance away, as seen in Figure

3. Further details about D are in the appendix.

We use the overall variance of the conditional (Equation

7) to set exploration: ǫ = 1 − 1
1+||V [ξ̇|θ,ξ]||

. Our reasoning

is that if the variance of the conditional is low, then the

multiple demonstrations are in agreement as to what velocity

should be associated with the current state. In this situation,

it makes sense to do what the model predicts. However, if

the variance is high, the demonstrations do not agree, and it

would therefore be sensible to try something new.

Our actual desired velocity is the most likely velocity:

ξ̇DNT = argmaxξ̇

K
∑

k=1

ρ̃kD(ξ̇; µ̃k, Σ̃k, ǫ) (12)

where each of the conditional Gaussian components has been

replaced by its pseudo-inverse. However, as there is no closed

form for the optima of a GMM we use gradient ascent to

find a local maximum in the area around an initial guess,

ξ̇′. For a new trajectory we initialize ξ̇′1 = ξ̇MEAN1 and take

ξ̇′t+1 = ξ̇DNTt for the other timesteps.

IV. EXPERIMENTAL SETUP

We test the above approaches on two tasks that are difficult

for human demonstrators to perform. The accompanying

video shows the tasks being demonstrated and the results of

learning with Donut MAP. Our robot is the Barrett WAM,

and we collect demonstrations kinesthetically, by placing

the used joint in gravity-compensation mode and physically

guiding it in attempts to perform the task while recording

joint angles (ξ) at 500Hz. Velocities ξ̇ are computed as the

single-step difference between samples (ξ̇t = ξt+1 − ξt).

While the tasks themselves are fairly simple (1DOF) and

performable by human demonstrators, it often takes them a

few tries to get it right. In standard RLfD, these failures

would be ignored, and only the successful performances

used. We instead learn only from these failures. We note that

all of our demonstrations are complete, in that task failure

does not lead to early termination of the attempt.

To evaluate our techniques we are concerned not only with

whether or not the task is eventually performed successfully

(which it is), but also with the breadth of possibilities that

are generated. That is, as continued failure is observed, we

want to generate trajectories that diverge more from the

demonstrations, exploring where no human had gone before,

while at the same time reproducing the parts of the task that

the different demonstrators agree on.

A. Task 1: Flip Up

Our first task, illustrated in Figure 4a, is to get a square

foam block to stand on end. The block is set at the edge of

a table, with a protruding side, but not fixed to the table in

any way. Using the robot’s wrist, the end effector comes from

below and makes contact with the exposed portion. The setup

is such that the block cannot be lifted to a standing position

while in contact with the robot. Instead, there must be a

‘flight’ phase, where the block continues to move beyond

the point in time when the robot ceases contact. Thus, the

robot must impart momentum to the block. However, too

much momentum and the block will topple over.

We collect 2 demonstrations of this task. In the first, too

little momentum is transferred, and the block falls back to

the initial position. In the second, too much momentum is

imparted, and the block topples the other way. The resulting

initial GMM is shown in state-velocity space in Figure

5a. We see that both demonstrations have the same basic

shape, but differ in their maximum velocity and their timing.

Further, they agree on starting and ending positions of the

task. These agreements should be reproduced in the trial

trajectories, while areas of disagreement are more explored.

(a) FlipUp (b) Basket

Fig. 5: Illustrations of the initial GMMs and the space of trajectories explored for each task by the techniques.

B. Task 2: Basket Ball

The second task we consider also depends on accurate

velocity control. Our basketball setup, shown in Figure 4b,

has the robot launching a small ball with a catapult, with the

goal of having the ball land in a basket attached to a wall

opposite. Our initial position has the robot’s end effector

already touching the catapult, so all necessary force must be

built up relatively quickly.

We again collect two demonstrations, one from each class

in the Balance Mean approach. The first causes the ball to

rebound off of the wall above the basket, and the second

below. The initial model is in Figure 5b.

V. DISCUSSION

As expected, the standard mean and MAP techniques

rapidly converge to unsuccessful policies. While some explo-

ration takes place (due to changes in the underlying models),

the generated trajectories are very limited and cover a small

portion of the available state-velocity space. Likewise, the

minimum technique leads to issues, generating velocities that

are not physically safe for the robot.

In terms of finding a successful policy, both the Donut

MAP (DNT) and Balanced Mean (BAL) techniques converge

within 10 iterations. However, the exploration exhibited by

each algorithm is distinctly different. To illustrate the breadth

of the search from each technique, we show the spread of 10

generated trajectories from each algorithm for each task in

Figure 5. For this illustration, we have assigned all generated

trajectories to the same class (+). For comparison, we show

the area explored by the standard mean.

We immediately see that of the three, the donut technique

covers the widest area, by an order of magnitude. While both

mean-based approaches are limited to generating trajectories

inside the span of the demonstrations, the donut is not,

which will allow it to succeed if all demonstrations are

in one class (e.g, too low). However, this advantage has a

downside. Because there are more possibilities to explore,

in our experiments the donut method took more iterations to

succeed than the balanced mean.

Further, as expected, exploration with both techniques

increased in the middle portions of both tasks, where the

demonstrations disagreed the most. At the beginning (and

to a lesser extent the end), the generated trajectories more

closely resemble the humans’. This behavior is more visible

in Figure 5a, which has more variance. We believe the

decreased agreement at the end of the movement comes from

accumulated drift during trajectory generation.

What these plots do not show is the order in which

trajectories are generated. For the BAL technique, the initial

trajectory is at the midpoint between the two demonstra-

tions. Successive trajectories then approach the negative class

incrementally. Donut, on the other hand, is much more

erratic in its exploration: The technique will generate a

few trajectories on one side of the data (slower than all

demonstrations), and then jump to exploring in between the

demonstrations, and then jump again to being faster.

We believe this behavior (and some of the visual jagginess)

arises from our use of gradient ascent in the velocity gener-

ation and our initialization. Since we are only finding a local

maximum, it may be that the generated velocity is actually

relatively unlikely. However, it will keep being selected until

the model has shifted enough to remove the local optimality.

Further, as we initialize with the mean at t = 1, we will

always start at the local maxima nearest to it, which may

unnecessarily curtail our exploration.

VI. FUTURE WORK

We are examining ways to alleviate these issues and im-

prove Donut’s performance. One approach is to use sampling

in an attempt to find the global maxima instead of a local

one. However, each additional sample would require its own

gradient ascent, which is computationally costly. Further, the

global maxima may shift greatly from one timestep to the

next, generating potentially unsafe velocities and torques.

We have also considered introducing a forgetting factor

into our GMM update. Currently, we resample only to speed

up the estimation of the updated parameters, and weigh our

samples to represent the total number of datapoints. We could

instead force the old data to have the same weight as the

newly generated trajectory (or some percentage of the old

weight), which may speed exploration. However, there is

then the worry that the original demonstrations will be lost.

In terms of the BAL approach, we currently hand-assign

trajectories to one of the two classes. For our tasks, this is

an acceptable method. However, as the behaviors become

more complex and high-dimensional, it may no longer be.

One possibility would be to first use unsupervised clustering

to automatically divide the data into (possibly more than

two) classes. Additionally, making the mixing parameter (α)

dependent on the current state may enable us to explore more

heavily when the demonstrations disagree more, in much the

same way the donut does now.

Looking at our work through the lens of reinforcement

learning, you can think of us as currently using a binary

reward signal: Success or failure, and we assume all of

our demonstrations fail. Rather than exploring randomly

in the space of possible trajectories, we generate guesses

based on the intuition that failure is likely due to the parts

of the demonstrations that differ. However, it is still the

case that some failures are worse than others. Using a

more continuous reward may allow us to better leverage

the available information and converge faster, while learning

from both failed and successful examples. One approach we

are investigating is to weigh the trajectories by the reward

when building our model. Alternatively, we could embed the

donut exploration directly into a standard RL technique.

VII. CONCLUSION

Current work in Robot Learning from Demonstration uses

ideas from Reinforcement Learning to deal with suboptimal,

noisy demonstrations and to improve the robot’s performance

beyond that of the human. However, an underlying assump-

tion is that the human has successfully completed the desired

task. We instead assume the negation, that the humans have

failed, and use their demonstrations as a negative constraint

on exploration. We have proposed two techniques for gener-

ating tentative trajectories and shown that they converge to

successful performance for two robot tasks.

ACKNOWLEDGEMENTS

This work was supported in part by the European Com-

mission under contract numbers FP7-248258 (First-MM)

and FP7-ICT-248311 (Amarsi). The authors thank Florent

D’Halluin and Christian Daniel for their assistance.

REFERENCES

[1] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and Autonomous

Systems, vol. 57, no. 5, pp. 469 – 483, May 2009.

[2] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Survey: Robot
Programming by Demonstration,” in Handbook of Robotics. MIT
Press, 2008, vol. chapter 59.

[3] E. A. Billing and T. Hellström, “A formalism for learning from
demonstration,” Paladyn, vol. 1, no. 1, pp. 1–13, 2010.

[4] A. N. Meltzoff, “Understanding the intentions of others: Re-enactment
of intended acts by 18-month-old children,” Developmental Psychol-

ogy, vol. 31, no. 5, pp. 838–850, 1995.
[5] J. Kober and J. Peters, “Policy search for motor primitives in robotics,”

in Neural Information Processing Systems, Vancouver, Dec. 2008.
[6] P. Abbeel, D. Dolgov, A. Y. Ng, and S. Thrun, “Apprenticeship learn-

ing for motion planning with application to parking lot navigation,”
in International Conference on Intelligent Robots and Systems, Nice,
France, Sept. 2008, pp. 1083–1090.

[7] S. Chernova and M. Veloso, “Interactive policy learning through
confidence-based autonomy,” Journal of Artifical Intelligence Re-

search, vol. 34, no. 1, pp. 1–25, Jan. 2009.
[8] D. H. Grollman and O. C. Jenkins, “Dogged learning for robots,” in

International Conference on Robotics and Automation, Rome, Italy,
Apr. 2007, pp. 2483 – 2488.

[9] B. Argall, B. Browning, and M. Veloso, “Learning by demonstration
with critique from a human teacher,” in International Conference on

Human-Robot Interaction, Arlington, VA, Mar. 2007, pp. 57–64.
[10] M. Hersch, F. Guenter, S. Calinon, and A. Billard, “Dynamical system

modulation for robot learning via kineshetic demonstrations,” IEEE

Transactions on Robotics, pp. 1463–1467, 2008.
[11] H. G. Sung, “Gaussian mixture regression and classification,” Ph.D.

dissertation, Rice, 2004.
[12] R. Neal and G. E. Hinton, “A view of the EM algorithm that justifies

incremental, sparse, and other variants,” in Learning in Graphical

Models. Kluwer Academic Publishers, 1998, pp. 355–368.
[13] X. Hu and L. Xu, “Investigation on several model selection criteria for

determining the number of cluster,” Neural Information Processing. -

Letters and Reviews, vol. 4, no. 1, pp. 1–10, July 2004.

APPENDIX

The Donut distribution is a pseudo-inverse of the base

normal distribution N (ξ̇; µ̃, Σ̃). It is defined as:

D(ξ̇; µ̃, Σ̃, ǫ) = 2N (ξ̇; µ̃,
1

rα
2

D

Σ̃) −N (ξ̇; µ̃,
1

rβ
2

D

Σ̃) (13)

where the component distributions’ means are the same as

the base distribution’s. Their covariances are defined by

scalar ratios rα and rβ which are themselves determined

from the desired exploration, ǫ ∈ [0, 1] and a maximum

width (peak-to-mean) λ∗. Equation 13 integrates to one, and

if rα < rβ is everywhere positive.

When talking about the Donut distribution, we define the

height (η) as the ratio between the Donut’s height at the

mean and that of the base distribution and the width (λ) as

the ratio between the peak-to-mean distance and the standard

deviation of the base distribution.

The Donut distribution approximates the base distribution

(η = 1, λ = 0) when

rα
b =

3
√

0.5

2(3
√

0.5 − 1) + 1
(14)

rβ
b = 2rα

b − 1 (15)

and achieves maximum width (λ = λ∗, η = 0) at

rβ
∗ =

2

λ∗

√

log[0.5]

0.52 − 1
(16)

rα
∗ = rβ

∗/2 (17)

We interpolate between these two points based on ǫ:

rα = (1 − ǫ)(rα
b − rα

∗) + rα
∗ (18)

rβ = (1 − ǫ)(rβ
b − rβ

∗) + rβ
∗ (19)

and set λ∗ = 6, giving the distributions seen in Fig. 3.

