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Abstract—In this paper, we consider a novel approach to
control the timing of motions when these are encoded with
autonomous dynamical systems(DS). Accurate timing of motion
is crucial if a robot must synchronize its movement with that of
a fast moving object. In previous work of ours [1], we developed
an approach to encode robot motion into DS. Such a time-
independent encoding is advantageous in that it offers robustness
against violent perturbation by adapting on the fly the trajectory
while ensuring high accuracy at the target. We propose here an
extension of the system that allows to control the timing of the
motion while still benefitting from all the robustness properties
deriving from the time-independent encoding of the DS. We
validate the approach in experiments where the iCub robot learns
from human demonstrations to catch a ball on the fly.

I. INTRODUCTION

Planning human-like robot trajectories for catching rapidly
moving targets is a challenging task. It requires to consider
two closely related problems: (1) predicting accurately the
trajectories of the fast moving object; (2) and fast planning of
precise trajectories for the robot’s end-effector. Estimation of
the dynamics of the moving object relies on accurate sensing
which cannot always be ensured in robotics. This may lead to a
frequent re-estimation of the target’s location as both robot and
object are moving. To compensate for such inaccurate sensing,
one needs to be able to constantly and rapidly re-estimate
the trajectory of the robot’s arm. In this paper, we address
both issues: estimating the motion of the moving object and
replanning of the hand’s trajectories so as to adapt to sudden
temporal and spatial perturbation of the target.

A body of work has been devoted to autonomous control
of fast movements such as catching [2] [3] [4] [5] [6] [7]
and hitting flying objects [8] [9], or juggling [10] [11] [12]
[13]. Next, we briefly review these works according to (1)
how they predict trajectories of moving objects and (2) how
they generate the robot’s motions [14]. To catch a moving
object properly, prediction of the trajectory of moving objects
is required. Hong et al [2] and Riley et al [5] model tra-
jectories of the flying ball as a parabola, and subsequently
recursively estimate the ball’s trajectory through least squares
optimization. Frese et al [4] and Park et al [7] also assume
a parabolic form for the ball trajectories and predict the
latter with Extended Kalman Filters [15]. Hong et al [2]
generate trajectories of specific light-weighted objects using
a generic aerodynamical model. To estimate the coefficient of
this model, they use a wavelet network [16].
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Such approaches can accurately estimate the trajectories.
But they rely on determining in advance a model of the motion
of the object. Here we estimate the dynamics of the moving
object using our generic estimator of non-linear dynamical
systems and based on the set of demonstrations.

To generate trajectories for catching moving objects, several
works use polynomials [2] [3] [6] [8] to satisfy some boundary
values on the trajectory. Zhang et al [3] used 5th order poly-
nomial to match catching position, velocity and acceleration.
Hong and Slotine [2] use 3rd order polynomials to match the
position/velocity of the end-effector and the ball. To accurately
reproduce the catching motion, they decelerate the end-effector
velocity along the initial path of the object after catching
an object. Namiki et al [6] also used polynomial equation.
The coefficients of the polynomial are found by resolving
an optimization problem, where the sum of the torques and
angular velocities are minimized so as to satisfy constraints
on the initial and final position, velocity and acceleration of
the end-effector. Senoo et al [8] developed a batting robot
based on their high-speed vision system. They split the control
of the robot’s joint so as to control separately for high-speed
swinging while allowing the remaining degrees of freedom
are used for fast adaptation to perturbation. Again a 5th order
polynomial was used for trajectory generation in joint space.

Another approach to generate a trajectory is imitating hu-
man behaviors. Schaal and Atkeson [10] [11] implemented
robot juggling tasks based on learning human behavior. They
used locally weighted regression to represent a learned model
of the task. Riely et al [5] use the point-to-point movement
representation primitives by programmable pattern genera-
tors(PPGs) [17] which is based on human movements, to catch
vertically falling objects. It can modify the trajectory on-line
for a new target.

Along the same line of thought, the Dynamic Motor Prim-
itive (DMP) offers a dynamical systems based representation
of motion [18]. Recent work extended the original DMP
formulation to allow a non-zero velocity at the target and was
successfully used for hitting a moving target [9]. However,
DMP as well as all the other approaches mentioned above are
time-dependent. This makes these methods very sensitive to
temporal perturbations. I.e., important changes in the duration
of the movement that arise when the distance from the end
effector to the target is reduced or extended, cannot be handled
easily. A heuristic must be used to rescale in time the clock of
the system. This problem has been largely overlooked in the
literature sofar. In [14], we proposed a means to learn time-
independent dynamical systems (autonomous dynamical sys-



tems) so as to become robust to temporal perturbations. Here,
we extend this work and address the problem of controlling
the duration of the motion when encoded in an autonomous
DS. Note that neither time-independent nor time-dependent
dynamical systems can be explicitly controlled for the duration
of the motion. Here we show how our controller can be used to
control both time-dependent DS such as DMP and autonomous
dynamical systems.

Though the discussed all of the above methods were suc-
cessfully applied to the object catching, hitting or juggling,
they are explicitly time-dependent and hence any temporal
perturbation after onset of the motion would not be properly
handled.

Specifically in this paper, we investigate the problem of
discovering and imposing temporal constraints on motions
encoded with non-linear dynamical systems [1], so as to
allow for coordination of robot’s motions with the motions
of external objects. We also demonstrate how our learning
framework can be extended to learn motion of external objects
with which the robot should synchronize. The accurate motion
timing is highly important if a robot has to synchronize with
external moving objects. However, the problem of imposing
timing constraints on arbitrary non-linear DS has received so
far little attention, since this encoding has been mainly applied
to spatially constrained manipulation tasks rather than to tasks
requiring explicit coordination. Here, we investigate control of
timing of a learned dynamical system so as to speed up or
slow down the robot’s motion and hence adhere to precious
temporal constraints.

In previous work of ours, we addressed different aspects
of encoding motions with dynamical systems, specifically:
effective and smooth adaptation in the case of spatio-temporal
perturbations [14], learning of asymptotically stable estimates
[19], learning of position and orientation control for motion
generation [1]. The present paper continues research in this
direction and presents new results on learning motions of both
the robot’s end-effector and external objects. This highlights
the ability of the system for continuous spatio-temporal adap-
tation and synchronization.

II. DYNAMICAL SYSTEMS WITH TIMING CONSTRAINTS

A. Autonomous dynamical system(DS)

To teach a new skill to a robot, a human demonstrates
it several times. The demonstrated trajectories together with
velocities are encoded with Gaussian Mixture Models (GMM)
through Expectation-Maximization(EM) algorithm. Encoded
movements are represented by a first-order autonomous dy-
namical system [1] :

˙̂
ξ = f̂ (ξ) =

K∑

k=1

hk (ξ)
(

µξ̇
k + Σξ̇ξ

k

(
Σξ

k

)−1 (
ξ − µξ

k

))
(1)

where ξ, ξ̇ are the position and the velocity of the robot’s
end-effector respectively; K is the number of Gaussian com-
ponents; µk and Σk are the mean and the covariance of a kth

Gaussian component. hk (ξ) gives a measure of the influence

of the kth Gaussian in generating the data point ξ; see [1]
for details. Controlling point to point robot motion with an
autonomous dynamical system given in [1] requires to ensure
that the so-generated motion is asymptotically stable at the
target of the motion. To verify the stability of our motion
generator, we use the approach suggested in [19].

B. Timing controller

Controlling for the duration of the motion when generated
by the dynamical system described in Section II-A is not
straightforward. The total duration can be estimated solely by
running the system until convergence.

We are going to extend the model describe in Section II-A
to allow one to modulate the speed of the motion generated
by the dynamical system in Eq. 1. While this could easily be
achieved with a time-dependent dynamical system,

Here we wish to conserve the time-independency of the
motion generator as it provides interesting properties for on-
the-fly replanning of the trajectory.

To provide a means of controlling the timing of the motion
when generated by the autonomous dynamical system given
in Eq. 1, we define a velocity multiplier λ. This multiplier
modifies the original dynamics, by modulating the velocity
mean µξ̇ and the covariance Σξ̇,ξ as follows:

µ̃ξ̇
k = λµξ̇

k (2)

Σ̃ξ̇ξ
k = λΣξ̇ξ

k (3)

˙̂
ξ = ˆ̃

f (ξ) =
K∑

k=1

hk (ξ)
(

µ̃ξ̇
k + Σ̃ξ̇ξ

k

(
Σξ

k

)−1 (
ξ − µξ

k

))
= λf̂ (ξ)

(4)
To allow for gradual and on the fly adaptation of the motion’s
duration so as to reach a position ξg in a given time T , we
compute our multiplier at each time step as follows:

ξtj+1 = ξtj + λti

L∑

l=1

˙̂
ξ{tj+

∆t
L l}∆t

L
(5)

λti+1 = λti + kp

(
T̂ ti − T

)
− kd

(
T̂ ti − T̂ ti−1

)
(6)

where ti is a time at the ith controlling step, ti+1 = ti + ∆t,
t0 = 0; λti is the velocity multiplier, λt0 = 1; kp and kd

are user defined proportional and derivative gains that control
for the reactivity of the system; T̂ ti is the estimated overall
motion’s duration (starting from the beginning of the motion at
time t0) as calculated at time ti; This duration T̂ of the motion
is estimated by integrating Eq. 5 until reaching the attractor
1. When the learned DS given by Eq.1 is modulated with the
multiplier λti , the resulting trajectory may deviate from the
one which was originally computed by the DS. Algorithm 1
summarizes the steps followed during the reproduction.

1To reduce the negative effect of a big integration step, we integrate the
dynamical law f̂ L times, before sending an actual command to the robot
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Fig. 1: We contrast adaptation to strong perturbations when
using our timing control to adapt timing of either the DS (red
solid line) or the DMP (blue dashed line) controllers. Both
systems are trained on human demonstrations of catching mo-
tions (light hashed lines). Spatial and temporal perturbations
were introduced by displacing the target twice at t = 0.2 and
t = 0.5. The timing controller gains were set to kp = 0.5 and
kd = 0.001. (a, c-h) The new trajectories generated by DS
and DMP both reach the target accurately, while reproducing
the demonstrated motion pattern enduring spatial and temporal
perturbations.

C. DMP with timing controller

In contrast with DS, duration of motion when generated
with a time-dependent dynamical system, such as DMP, can be
computed explicitly, if the time to target is known in advance
before generating the trajectory. However, when the desired
motion’s duration to reach to the target is changed while in
motion, one can no longer find an appropriate τ to control
for the rest of the motion, as the relation is no longer linear
(unless one stops the robot and starts the motion again from
the location of the perturbation; such a stopping would be
brutal and bound to prevent the robot to reach the target).
Hence similarly to time-independent DS, a method is required
to adapt gradual and on the fly to the motion’s duration.

The timing controller presented in Section II-B can be
used to control for the duration of movement when generated
by DMP as well. DMP is composed of a linear 2nd order
dynamical system, to which we refer to as f2 and a modulating
term fm (estimated through LWR) [20] and is given by the
following set of equations:

ξ̇ = τ̃ (f2 (ξg, ξ) + fm (ξg, z)) (7)
ż = τ̃ f1 (z) (8)
τ̃ = λτ (9)

Where τ is a time constant which is correspond to the in-
verse of the duration T ∗ of the learned motion, i.e. τ = 1/T ∗;
The state ξ = [ξ1; ξ2] is consisted with position of each degree
of freedom ξ1 and its velocity ξ2; ξg = [ξg

1 ; 0] is the target
position with zero velocity.

III. EXPERIMENT: CATCHING A FLYING BALL

To validate the proposed timing controller, we conducted
experiments where the iCub robot is required to catch a ball
on the fly.

To obtain a training data set, a human provided forty
demonstrations of different catching motions using a data
glove and the X-Sens motion capture suit; see Figure 2. The
captured motions were mapped into the joint angles of the
53 degrees of freedom humanoid robot the iCub in real-time.
This allowed the teacher to an immediate visual feedback of
his actions on the robot and verify that the mapping resulted
in correct motion in the robot.

While capturing human demonstrations we did not record
the ball’s trajectories. Instead, we assumed that the ball’s
velocity vector was opposite to the palm’s direction at the
catching point. With the demonstrated trajectories, we trained
the configuration of the robot’s end-effector in the task
space ξ = [x; o; ρ] together with the corresponding velocities
ξ̇ = [ẋ; ȯ; ρ̇]. Where x ∈ R3, o ∈ R3 , ρ ∈ [0..1] are
respectively the Cartesian position, the palm direction, and
the degree of grasping (a normalized one-dimensional variable
characterizing the degree of clench of the robot’s hand; 1.0
corresponds to completely open hand ; 0.0 corresponds to the
predefined grasping configuration).
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Fig. 2: Left: a motion capture set-up used to collect the training
data. Right: the ball was thrown to the catcher from 3 meter
distance.

For making a robot being able to catch a flying object, one
should proceed to: 1) estimating the ball’s dynamics to predict
the timing of the robot’s motion; 2) estimating the duration of
the robot’s motion and the end-effector configuration at the
catching moment; 3) generating a task-space trajectory of the
motion that satisfies the temporal and spatial constraints; 4)
resolving the inverse kinematics to find a suitable joint angle
configuration. We address these problems.

A. Estimation of the ball’s motion dynamics

The dynamic model of the ball motion can be learned using
our dynamical system estimator described in Section II-A
without attractors :

ẍb = f̂b (ẋb) (10)

where ẋ ∈ R3 and ẍ ∈ R3 are the velocity and acceleration
of a moving object in cartesian space respectively.

Encoding with our generic DS provides an efficient way
to model a dynamics of a moving object solely by observing
examples of the object’s displacement in space and without
any prior information on the physical properties of the object
such as its mass, density, etc.

As we currently do not have yet a visual system that can
track very fast moving objects, to estimate the ball’s dynamics,
a ball was thrown several times with random velocities in
the iCub simulator, and its trajectories were observed. Once
learned, the system f̂b is used to predict the ball trajectory at
each time step given an observed initial position and velocity
for the ball.We could further estimate the trajectory of the
ball from the observed initial position and velocity of a ball
through Eq.10; see Figure 3.

B. Catch point determination

The robot starts tracking the ball when it is inside of pre-
defined 3D measuring region. The robot estimates the trajec-
tory of the ball using the approach discussed in the previous
section. To determine the catching configuration, the robot first
verifies that the ball is catchable, by checking the intersection
line of the estimated ball trajectory and the workspace of
the robot arm. If the ball is catchable, the catching time
and end-effector configuration are chosen so as to minimize
the motion of the end-effector along the intersected path [4].

Algorithm 1 Catching a ball

1: —————-Training——————————————-
2: [ẋ, ȯ, ρ̇] = f̂(x, o, ρ) ⇐ learn the estimate of the dynamics

of the robot’s motion.
3:
4: ẍb = f̂b(ẋb) ⇐ learn the estimate of the ball’s motion.
5: λt0 ⇐ 1.0
6: —————-Motion Generation——————————–
7: loop
8: —————-Predicting of the ball motion—————-
9: if (ball is detected) then

10: xti

b ⇐ from vision
11: [xb]ti..tN ⇐ generate an estimate of the ball trajectory

through f̂b(ẋb); see Sec. III-A.
12:
13: if (ball is catchable) then
14: Determine the catching position and orientation ξg

and the desired motion duration T ; see Sec. III-B.
15: else
16: Stop and go back to the rest posture.
17: Exit the loop.
18: end if (ball is catchable)
19:
20: end if (ball is detected)
21: —————-Generating the robot motion—————-
22: ξ̇ti ⇐ λtif(ξti).
23: T̂ ti ⇐ estimate the reaching time by integrating Eq. 5

till ‖ξti − ξ∗‖ < ε.
24: λti+1 ⇐ update the timing constant through Eq. 6
25:
26: θt

i ⇐ find the IK solution for ξti+1 ; see Sec. III-D
27: Send θti to the robot and get the feedback from motors.
28: if (|ξti − ξg| < ε) then
29: Exit the loop.
30: end if
31: end loop

The estimated end-effector configuration at the target xig is
mapped into the attractor of the dynamical system given by
Eq.4. And the estimated catching time is set into the desired
reaching time(T ) in our controller given by Eq. 6.

C. Task-space motion generation

The robot further starts to generate a motion of the end-
effector and the finger using the suggested approach. When
the robot receives updated information of end-effector catching
configuration and catching time, DS with timing controller
gradually re-estimates the motion’s duration by integrating
the trajectory forward and properly adapting the velocity
according to Eq.4-5.

D. Inverse Kinematics

Finally, the damped least squares method [21] is used to
convert the generated position and the palm’s direction into
joint angles.
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Fig. 3: 5 simulated trajectories of the ball (green dot line).
The reconstructed trajectory (red dashed line) successfully
reproduces the testing trajectory(blue solid line)

For the fingers motion, we defined the two finger configura-
tions: fully stretched(qfinger

1 ∈ R9) and closed (qfinger
0 ∈ R9).

The trajectory of the 9 DOF of fingers was generated through
the following equation with the learned degree of grasping ρ
and the two finger configurations :

qfinger = ρqfinger
1 + (1− ρ) qfinger

0 . (11)

The experimental results, we have obtained so far in both
simulated and real environments (see the web link 2), confirm
that the iCub endowed with the proposed DS and its timing
controller manages to catch the ball on the fly successfully;
see results in Figure 4 and 5.

We also applied this method to control for motion duration
in a time-dependent dynamical system encoding, provided
by DMP; see Figure 1. The controller gradually change λ
when it receive more accurate target position and the motion’s
duration, so as to reach the target on time, whatever the motion
is encoded by DS or DMP. Since the change is gradual, it must
be sufficiently quick to allow rapid adaptation to displacement.
This depends on the gain parameters. These must be set
so as to allow a reasonable acceleration peak. Note that by
controlling only for the end-effector’s position and by relying
on an inverse kinematic controller for controlling for the joint,
this may lead to too large acceleration peaks at the level of
the joints and hence a conservative approach in the setting of
the gains should be taken. In future work, we will exploit the
generalized inverse kinematics method we developed in [22]
for balancing a controller in joint and cartesian positions.

IV. CONCLUSION

In this paper we exploited the robustness of time-
independent motion encoding through autonomous dynamical
systems and developed a method to control for motion dura-
tion while remaining time-independent. The timing controller
gradually speeds up or slows down the learned motion(DS and

2http://www.youtube.com/ksrobot

DMP), and hence adheres to precious temporal constraints. We
validated the approach in the experiment where the robot iCub
successfully catches a ball in motion.
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