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We present an algorithm enabling a humanoid robot to visually learn its body schema,
knowing only the number of degrees of freedom in each limb. By “body schema” we
mean the joint positions and orientations and thus the kinematic function. The learning
is performed by visually observing its end-effectors when moving them. With simulations
involving a body schema of more than 20 degrees of freedom, results show that the system
is scalable to a high number of degrees of freedom. Real robot experiments confirm the
practicality of our approach. Our results illustrate how subjective space representation
can develop as a result of sensorimotor contingencies.

Keywords: Kinematic learning; tool use adaptation; body schema; peripersonal space
representation; multimodal integration; developmental robotics.

1. Introduction

One of the major components of human agility and dexterity is arguably its ability
to merge multiple sensory informations and learn the relationships between infor-
mations coming from different modalities. In traditional robotics, the importance of
learning the mapping between different sensory modalities is often neglected. The
robot geometry is generally assumed to be known, and the sensor properties are
acquired offline, via a calibration process.

For humanoid robots, which usually comprise a high number of degrees of free-
dom (DOFs) and of sensors, and are intended to operate in human environments,
learning the sensorimotor contingencies is likely to bring significant advantages, as it
amounts to a continuous self-calibration. For example, by learning its body schema,
a humanoid robot can adapt to errors in the vision calibration, or to the use of
tools. It makes the robotic system less dependent on the human measurements of
the system, such as body shape, visual marker positions, and so on.

On the other hand, it has been argued that humanoid robots offer an interesting
platform for testing hypotheses on human cognition.28 Despite their limitations,
humanoid robots can be taken as (rough) models of human bodies in that they
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have multiple DOFs and multiple sensory inputs. It is then possible to implement
computational processes putatively taking place in the brain and see how they per-
form for humanoids. This is likely to yield interesting indications of the effectiveness
of those hypothesized computational processes.

Bearing in mind this twofold approach, we propose a mechanism by which a
humanoid robot can learn its body schema through combining information from the
proprioception (motor encoders), the stereovision and possibly tactile sensors. The
body schema is modeled by a hierarchy of frames of reference (FOR) transformations
which are continuously adapted as sensory information is acquired by the robot.

The rest of this paper is organized as follows. Section 2 provides a succinct
overview of previous approaches to learning the body schema. Section 3 recalls some
well-known facts about how multisensory information is integrated in primates to
form a coherent view of the peripersonal space. Section 4 introduces a new model
of an adaptive body schema and provides an algorithm for learning it. In Sec. 5,
experiments are performed first in simulation on a 24–DOF humanoid robot and
then with a real humanoid robot that adapts to the use of a tool. Those results are
discussed in Sec. 6, which also highlights the relevance of the model to the study of
human cognition. A brief conclusion is presented in Sec. 7.

2. Related Work

The robot geometry is the key element which determines the forward and inverse
kinematic functions of this robot. The forward kinematic function K is defined by
the relationship between the vector of joint angles q defining a given arm configu-
ration and the corresponding position x of the end-effector in space:

x = K(q). (1)

The inverse kinematic function K−1 is the inverse function, q = K−1(x). Finding
this inverse function is an ill-posed problem in the case of redundant manipulators.
Most work dealing with the learning of a robot geometry directly tackles the issue of
learning the inverse kinematic function. This is indeed one of the standard issues in
robotics — namely, knowing that we want the robot to reach a particular location
x in space, what are the arm configurations q (the vector of arm joint angles)
that bring the end-effector to this location? This is a fundamental issue, and many
solutions have been suggested. If the forward kinematic function K is known, it
is possible to use local solutions that iteratively bring the robot end-effector to
the desired location by computing some (pseudo)inverse of the Jacobian matrix of
K.23,29,32,34

If K is unknown, there are global solutions that directly learn the mapping
K−1 between the end-effector position and the corresponding joint angles. This is
typically done using some function approximators, like multilayer perceptron,12,20

locally weighted projection regression,7 self-organizing maps,10,31 possibly com-
bined with quantum clustering.17
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Finding the forward kinematic function is much easier. It can be done by mea-
suring the segment lengths and computing the chain of successive rotations and
translations (as done in Subsec. 4.1). Therefore, it has not attracted much atten-
tion in the robotics community. There are, however, some works, mostly com-
ing from the epigenetic robotics community, where an artificial system learns to
control its motions. For example Kuperstein18 learns a visuomotor coordination,
and in Metta et al.22 the motor torques for reaching a point are learned. In
those examples, the number of DOFs of the arm is generally quite low (between
two and five). Using self-organizing maps, Fuke et al.9 learn the correspondence
between visual, proprioceptive and tactile informations in a simulated arm–face
system.

The work presented here differs from previous approaches in that the learning is
performed entirely online and it can deal with a high number of DOFs. Moreover, the
model does not focus solely on determining the position of the end-effector, but also
yields the position of each segment and can compute the associated Jacobians. It
thus provides additional information, which can be very useful, such as for obstacle
avoidance or for computing iterative local inverse kinematics. Finally, the system
presented here can offer interesting explanations of the way humans represent their
peripersonal space, in a multimodal way.

3. The Body Schema

In this section we review some evidence based on psychophysical and neurophysio-
logical studies that suggest that, in primates, multisensory information is integrated
through a hierarchy of FORs that reflects the body structure. This hierarchy allows
a mapping across the visual, proprioceptive, motor and tactile modalities and is
highly adaptive. A more comprehensive review has been written by Holmes and
Spence.14

There is undoubtedly a strong interaction between visual, tactile and propri-
oceptive sensory informations. The existence of bimodal visuotactile neurons in
the monkey and psychophysical experiments involving cross-modal extinctions have
put in evidence the existence a visuotactile representation,19 while the discovery of
body-part centered visual fields27 shows that there is a strong interaction between
proprioception and vision.

It is believed that each sensory–motor modality receives and provides informa-
tion represented within different FORs. For instance, proprioception, touch and
motor commands are coded in a FOR centered on the specific body part they rep-
resent and control,1,26,30 i.e. a local representation, whereas visual information is
perceived in an eye-centered or retinotopic manner,16 i.e. a visual representation.
Since visual, tactile and proprioceptive feedback are tightly coupled in space and
time and together form the representation of one’s own body, multisensory infor-
mation has to be integrated across modalities so that a coherent view of the body
can emerge. It has been suggested that this integration is made through a series of
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transformations across intermediary FORs.6,25 Indeed, neurons coding position in
a FOR centered on body parts have been reported by Graziano and Gross.11

The adaptivity of those transformations is particularly evident in psychophys-
ical experiments involving prism adaptation.33 It has long been known that when
subjected to a visual shift or distortion caused by a prism, human subjects first tend
to reach, expectedly, the seen position, rather than the actual position of the reach-
ing target. After a while, however, they can correct for the visual distortion and
accurately reach the target. For this to occur, visual and proprioceptive feedback
of the hand is necessary. When the visual distortion is removed, the subjects show
so-called after-effects, i.e. they still reach the virtual target, as if the visual distor-
tion was still active. This occurs although they are aware that it is not the case.
This adaptability has been demonstrated for visual shifts (rotations), reflections and
stretches but could not be shown for more complicated deformations which do not
preserve the space topology.3 Furthermore, people could adapt to transformations
expressed in intrinsic (joint angle) coordinates.15

Another kind of experiment emphasizing the adaptiveness of the body schema
involves the use of tools. It has been shown that after some practice with a tool, the
monkey integrates this tool into his body schema.21 The somatosensory receptive
field of given neurons was observed to be expanded by the tool, after some practice.

Finally, the “fake limb” experiments also highlight the adaptive and tight con-
nection between different sensory modalities and the feeling of one’s own body.4 In
those experiments, a subject sees a fake limb being touched synchronously with his
real, unseen arm and feels that the fake arm is his.

This argues in favor of the existence of a comprehensive framework, which allows
one to combine information across visual, tactile and proprioceptuomotor modal-
ities, and to perform the appropriate FOR transformations required for the inte-
gration of this information. Those transformations are highly adaptive, and are
constantly learned as a result of sensory experience.

4. A Model of the Adaptive Body Schema

4.1. Kinematic chains

Considering a serial manipulator with n rotative joints, it is possible to compute
how a position given in the end-effector FOR can be expressed in the manipulator
base FOR. In other words, we can compute the FOR transformation from a FOR
centered on the distal segment to the FOR centered on the proximal segment. This
is done by considering the rotation and translation corresponding to each joint and
segment, as is commonly done for computing kinematic functions, e.g. the Denavit–
Hartenberg kinematic chain parametrization. This transformation can be seen as a
series of successive rotations and translations, where the rotation angles are given by
the manipulator joint angle and the translations are given by the vector difference
between the joints. Thus, it is possible to transform a vector vn from a FOR centered
on the end-effector to a vector v0 in a FOR centered on the other side of the chain
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by a transformation T described by the following equation:

v0 = T (vn)

= T1 ◦ R1 ◦ T2 ◦ R2 ◦ · · · ◦ Tn ◦ Rn(vn)

= l1 + R1(l2 + R2(· · · (ln + Rn(vn)) · · · )), (2)

where Ti and Ri represent respectively the translation and rotation corresponding
to segment i and joint i, li denotes the vector representing the link proximal to joint
i at the zero position, and Ri is the rotation caused by joint i. Figure 1 illustrates
how the segments are numbered and how this FOR is computed. Note that, similarly
to the Denavit–Hartenberg parametrization of kinematic chains, li can be zero if
joints i − 1 and i have the same rotation center.

4.2. Single segment adaptation

We consider the following problem regarding a single joint manipulator (see Fig. 2).
We assume that we have an initial guess of the unit rotation axis a and the joint
position l. Now, given a vector v in a FOR centered on the distal segment, its actual
transform v′ centered on the proximal segment and the rotation angle θ, how is it
possible to adapt a and l so that they account better for the actual transformation
induced by the manipulator?

In order to do so, we perform a simple gradient descent on the squared distance
between the actual and the simulated transform vector:

∆l = −ε
∂

∂l
1
2
‖v′ − (l + Rθ

a(v))‖2, (3)

∆a = −ε
∂

∂a
1
2
‖v′ − (l + Rθ

a(v))‖2, (4)

where Rθ
a is the rotation of the angle θ around the axis a and the learning step ε is

a small positive scalar. The derivative with respect to l in Eq. (3) is straightforward

Fig. 1. The parametrization of a kinematic chain. The dashed line represents the kinematic chain
in the zero position (when all angles are equal to zero). The solid line represent the same chain
with different rotation angles. O refers to the origin.
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Fig. 2. The learning problem for a single segment. The real rigid transformation is shown on the
left and is parametrized by unknown vectors l∗ and a∗ and known angle θ. The current guess of
this rigid transformation appears on the right and is parametrized by l, a and θ. Knowing a vector
v and its real transform v′ and the rotation angle θ, we try to update our guess of l and a. The
letters A and C indicate respectively the origin and the end-effector of the manipulator.

to compute. We have

∆l = ε(v′ − (l + Rθ
a(v))). (5)

In order to compute the derivative with respect to a in Eq. (4), we make use of the
Rodrigues formula2:

Rθ
a(v) = cos(θ)v + sin(θ)a × v + (1 − cos(θ))aT va. (6)

Hence

R̄θ
a

.=
∂

∂a
Rθ

a(v) = sin(θ)v↑ +(1 − cos(θ))(avT + (aT v)I), (7)

where I is the 3 × 3 identity matrix and the unitary operator↑ is defined as

v↑ .=
∂

∂a
(a × v) =


 0 v3 −v2

−v3 0 v1

v2 −v1 0


 , with v = [v1 v2 v3]T . (8)

Thus

∆a = ε(v′ − (l + Rθ
a(v)))T (sin(θ)v↑ +(1 − cos(θ))(avT + (aT v)I)). (9)

Since a must be of unit norm, it is normalized to 1 after being updated. This solves
our problem. Using Eqs. (5) and (9), it is possible to adapt the representation of
the joint position and orientation online, as examples of positions in the distal FOR
and the corresponding position in the proximal FOR are provided. This algorithm
always converges to the correct translation and rotation axis when provided with
enough different values of v and v′ (see Subsec. 4.4).

4.3. Multisegment adaptation

We can now apply the same principle to multisegment manipulators. Starting from
Eq. (2), it is possible to compute

∆li = −ε
∂

∂li

1
2
‖v′

n − T (vn)‖2, (10)

∆ai = −ε
∂

∂ai

1
2
‖v′

n − T (vn)‖2, (11)
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where ai is the rotation axis of Ri. If Ri is the rotation matrix corresponding to
joint i (i.e. of axis ai and angle θi), we have

∂

∂li
T (vn) =

i−1∏
j=1

Rj, (12)

∂

∂ai
T (vn) =


i−1∏

j=1

Rj


 ∂

∂ai
(Ri(Ti+1 ◦ Ri+1 · · · ◦ Tn ◦ Rn(vn))), (13)

where the derivative on the right-hand side of the latter equation is obtained by
applying Eq. (7). All the rotation axes and translation vectors can thus be simul-
taneously updated using

∆li = ε(v′
n − T (vn))T

i−1∏
j=1

Rj , (14)

∆ai = ε(v′
n − T (vn))T





i−1∏

j=1

Rj


 ∂

∂ai
(Ri(Ti+1 ◦ Ri+1 · · · ◦ Tn ◦ Rn(vn)))


 .

(15)

4.4. Convergence

4.4.1. Single joint case

Theorem 1. Assuming that we run the algorithm on a set of configurations given
by {v, T ∗(v), θj}J

j=1, where θj follows a symmetric probability density function (pdf)
centered on 0, such that var(cos θj) ≤ 2var(sin θj), the algorithm described by itera-
tively applying (3) and (4) converges to a correct estimate of a and l.

The proof is given in the appendix.

4.4.2. Multisegment case

The convergence for the multisegment case cannot be proven. In order to have an
idea of the convergence properties, simulations were performed. In a single sim-
ulation run, the rotation axes a∗

i and ai of two kinematic chains were randomly
generated. The li were initialized with small random values and the algorithm was
run in order to see whether the ai converge to the a∗

i . Convergence is considered to
be attained if the distance between the real limb position and the modeled limb posi-
tion remains smaller than a threshold (around 1% of chain length) over 500 different
configurations. Thousands of those runs were performed for 1-, 3-, 5- and 7-DOFs
kinematic chains. The results can be seen in Fig. 3 (left). Expectedly, if there is
only one joint, the algorithm always converges. When there are more DOFs, the
algorithm fails to converge after a million iterations in less than 1% of the cases.
The time it takes for convergence is plotted in Fig. 3 (right). Figure 4 gives an
example of the evolution of the estimate of the rotation axes for a kinematic chain
containing 3 DOFs.
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Fig. 3. Left: The percentage of trials that did not converge after a million iterations. Right:
The time needed for convergence depending on the number of DOFs. The bars on the left show
the mean number of iterations until convergence, and the three histograms on the right show the
distributions of convergence time. The distributions have quite a long tail, indicating that in some
cases it takes much longer than average to converge.
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Fig. 4. The evolution of the rotation axes for a 3 DOF kinematic chain. The real axes are indicated
by the three diamonds, and each graph shows the evolution of one estimated axis on a sphere of
radius 1.

4.5. Adaptive body schema

4.5.1. Kinematic tree

The humanoid body schema can be represented as a tree of rigid transformations
reflecting the limb structure, as shown in Fig. 5. We thus have a kinematic tree
with adaptive joint positions and orientations. Note that the structure of this tree
(i.e. the number of joints and the ordering) is given and remains fixed.

Out of this tree, kinematic chains can easily be extracted as paths in the tree. It
is possible to compute the FOR transformation from a FOR attached to any joint of
the kinematic tree to a FOR attached to any other joint. This is done by first finding
the path joining the two corresponding nodes. To each edge along this path, there
corresponds a FOR transformation. Depending on the direction in which an edge
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Fig. 5. A kinematic tree representing a humanoid. Nodes represent rotations and edges represent
translations.

Fig. 6. The generating of the kinematic chain for the FOR transformation relating the FOR
attached to two nodes in the tree. When taking an edge up (to the root), one takes the inverse

transform, and when taking an edge down (to the leaf), the actual transform is taken. In this
example, the transformation from a FOR centered on joint 6 to a FOR centered on joint 4 is given
by R−1

4 ◦ T−1
4 ◦ R−1

3 ◦ T−1
3 ◦ T6 ◦ R6.

is taken, the transformation or its inverse is considered. An example is provided in
Fig. 6, showing how a kinematic chain is extracted from the kinematic tree.

4.5.2. Body schema learning

We assume that the robot is endowed with a stereovision system that can track
the position of its end-effectors. This position is provided in a head-centered FOR.
Within the kinematic tree, the path going from the head to the end-effector corre-
sponds to a kinematic chain that transforms positions and orientations from a FOR
centered on the end-effector to a visual or head-centered FOR. Using (15) and (14),
it is possible to update all the rigid transformations along this chain. As input v′

n

are given by the stereovision system and vn is the position of the end-effector in its
own FOR. This is illustrated in Fig. 7 (left). This figure also shows how the same
algorithm could be used with tactile sensors for tactile body schema learning.
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Fig. 7. Humanoid body schema adaptation. The big circle marked H is the head of the humanoid.
Left: Visual learning side view of the robot. The position of the limb in its own FOR vn is
transformed into a visual head-centered FOR v′

n. Right: Tactile learning, top-view. The positions
of touch sensors in the FOR of their limbs vn and v′

n transform into one another.

4.5.3. Subjective body schema

Traditionally, the body schema has been considered as an objective account of the
body characteristics, such as the arrangement of the limbs, their lengths or the
positioning and effect of the joints. It is possible to oppose this “objective” body
schema with a “subjective” view of the body schema, which would be dependent
on the perceptual abilities of the robot. In this view, which is adopted in this
paper, the body schema deals only indirectly with physical properties of the body.
It primarily deals with the FOR transformations associated with the sensory signals.
For example, given a proprioceptive input corresponding to a particular posture,
the body schema can predict the corresponding visual perception. This depends
not only on the physical properties of the body but also on the properties of the
sensory system. Moreover, it can be that a precise account of the physical properties
of the body is not necessary for the “subjective body schema,” depending on the
sensory system. For example, in our case, if the robot can track only end-effector
positions, many different body geometries will yield the same “subjective” body
schema. In the simple example depicted in Fig. 8, such a robot will not be able to
differentiate between the two “objective” body schemas. These will correspond to
the same “subjective” body schema. As the corresponding kinematic function and

C

B

B

A

Fig. 8. A simple example of two different geometries (solid and dashed) yielding the same FOR
transformation from an A-centered to a C-centered FOR.
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Jacobian remain the same in both cases, using one or the other body schema for
controlling its movements will produce the same end-effector trajectories.

5. Humanoid Experiments

5.1. Setup

In order to validate the algorithm described above, we tested it in simulation on
a 24 DOF humanoid robot. Testing the algorithm on a real robot with that many
DOFs would be quite impractical, for the following reasons.

• It requires the availability of such a sophisticated robot, with that many DOFs,
stereovision and a tactile skin.

• The high number of positions that the robot has to visit would require from a
real robot many days of continuous exploration for the algorithm to converge.

• A real robot may not be able to see all its end-effectors (in particular its feet),
due to a limited visual angle and joint range and possible occlusions.

The simulated humanoid (or avatar) has the shape of the Fujitsu Hoap3 robot and
comprises 24 DOFs. A schematic of the robot is drawn in Fig. 9. When learning the
body schema, the avatar configuration space was randomly sampled with a uniform
distribution. The joint angles and corresponding visual position were fed into the

Fig. 9. The structure of the Hoap3 robot. Spheres show the joints, with the rotation axis shown
as dark lines going through them. The hand rotations were not used, and an additional head roll
joint was modeled. This makes 24 DOFs. This picture is from the Hoap documentation provided
by Fujitsu.
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algorithm. The body schema was initialized with random joint orientations and
small random body segments.

5.2. Results

In this section, we present a set of experiments intended to first validate the frame-
work described above. In a first validation step, we used the algorithm described
above to learn the body schema of the Hoap3 robot described in Subsec. 5.1. In
this first experiment, only the two hands and feet were tracked. This means that
four kinematic chains were concurrently used: head–right hand, head–left hand, and
head–right foot, and head–left foot. At each time step a joint angle configuration
was randomly chosen, and the corresponding positions of the hands and feet in a
head-centered FOR were computed for the Hoap3 robot. Along with the joint angle
values, those four positions were fed as v′

n [see Eqs. (14) and (15)] for adapting the
corresponding kinematic chains. The result can be seen in Fig. 10, which plots the
error of the kinematic function, i.e. ‖v′

n − T (vn)‖, at each iteration. After many
iterations, the system converges to the appropriate subjective body schema as the
error converges to zero. Note, however, that the objective body schemas differ, as
can be seen in Fig. 11.

In this experiment, a minimal amount of information is provided by the vision
system as it always tracks only end-effectors, like hands and feet. But it is also
possible for the vision system to track nonterminal body parts, like elbows and
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Fig. 10. The convergence of the learning algorithm. On the y-axis is the error in the computation
of the limb position, in a head-centered FOR.
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Fig. 11. Left: The Hoap3 “real” body schema, when standing on its knees. Middle: The objective
body schema that was learned by the system when looking only at its hands and feet. It is not
exactly the same, but the sensory relationships of both schemas (i.e. the subjective body schemas)
are the same, when considering only vision of the hands and feet. Right: The body schema learned
when also looking at elbows, knees, shoulders and the waist. The darker sticks indicate the rotation
axis of each joint. There are three DOFs at the shoulders and the hips.

knees, as well. This, of course, is expected to make the system converge to the
right geometry and also to considerably speedup the learning process, as much
more information is available to the system. Indeed, tracking nonterminal body
parts amounts to having shorter kinematic chains which significantly reduces the
dimension of the problem.

So, in a second experiment, the vision system alternatively tracks terminal (hand
and feet) and nonterminal (knees, elbows, shoulders and waist) body segments. In
this case, convergence is faster and the robot geometry is correctly retrieved as there
is no ambiguity on the joint locations (see Fig. 11).

5.3. Real robot experiment

In order to evaluate the practicality of our approach, we conducted an experiment
in a real robotic setting. In this experiment, the robot carries an unknown tool. By
looking at the tip of the tool the robot can integrate this tool into his body schema,
thus enabling it to manipulate it adequately. This setting is shown in Fig. 12. We
use the Hoap3 robot, which is endowed with a stereovision system.

In the results presented here, the robot is initialized with its “real” body schema.
It holds a 340-mm-long stick in the hand, with a color blob at its tip. We then make
the robot passively move its arm, with the tip of the stick remaining within the
field of view of the cameras. The stereovision system tracks the tip of the stick,
and the robot joint angles are read from the motor encoders. Those two sets of
values (position of the tip of the stick and joint angles value) are then continuously
fed into the learning algorithm, like in the simulation experiments. The vector v
in Eqs. (14) and (15) is the position of the end-effector in its own FOR; in other
words, zero. Two cases (using the same data) are tested. In the first case, only
the terminal limb is adaptive, i.e. we do not change the position and direction of
the nonterminal joints. In the second case, the whole arm is adaptive, as in the
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Fig. 12. The setup of the real robot experiment. The robot holds a stick and visually tracks its tip
and records its arm joint angle values, while its arm is passively moved.

adaptive terminal segment adaptive arm
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Fig. 13. Incorporating the tool in the body schema. These graphs show the evolution of the
distance between the end-effector positions seen by the hand on one hand, and computed using
proprioception and the body schema on the other hand. On the left, only the terminal limb is
adaptive; on the right, all the limbs are adaptive. In both cases the body schema adaptation

reduces the error from approximately 40 cm to 5 cm.

simulations presented above. The results are displayed in Fig. 13. This figure shows
the distance between the positions of the end-effector as seen by the stereovision on
one hand, and as computed by the body schema on the other hand. In other words,
the y-axis plots ‖v′

n −T (vn)‖, where v′
n is given by the stereovision and vn is zero.

One can see that in both cases the system starts with an error of about 40 cm, which
corresponds approximately to the length of the stick, and reduces this error to about
5 cm. This means that the stick has been incorporated in the body schema, although
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imprecision in the stereovision system keeps this error of about 5 cm. In the plot,
one can notice a few peaks of large errors. These are outliers of the stereovision
system, and correspond to a bad tracking of the color blob. Of course, the resulting
error values are inevitable, but it is interesting to note that the system is quite
robust to such outliers, as the next error values are again in a reasonable range. It
takes about 2000 steps to reduce this error if only the terminal limb transformation
is adaptive, and 1000 steps if all the limb transformations are adaptive. This takes
2–3 min, as updates are performed at a rate of approximately 10H.

6. Discussion

Our results show that the suggested framework for body schema learning is effective.
Indeed, simulation results show that it can learn the structure of a 24 DOF robot by
tracking only the end-effectors. Furthermore, real robot experiments show that the
method is applicable in a real setting. Given the fast development of actuator and
sensor technologies, it may possible in the near future to use this algorithm with all
DOFs of real humanoid robots. For practical purposes, as it may be cumbersome to
gather millions of points in the training set, it may be more efficient to apply this
algorithm to a smaller set of data, well distributed in the joint ranges, and perform
the iterations on this more restricted set.

The model presented here differs from earlier work on this topic mainly in that
the knowledge of the kinematic structure is given in advance. In other words, the
robot knows not only the number of DOFs, but also how they are arranged (serially
or in parallel). Moreover, the model takes explicit advantage of the fact that those
are rotative joints, which was usually not done in other works. Thus the effectiveness
of the learning algorithm relies on this a priori knowledge. However, we believe that
it is reasonable to assume such an a priori knowledge, as the kinematic structure of
the humanoids usually does not change over time. Similarly, the kinematic structure
of humans is fixed and does not evolve. Limbs grow, but new joints do not appear
in a lifetime.

This last point illustrates that the results presented in this paper shed light on
several interesting questions related to the learning of the body schema in robots
and humans. In its present state our model cannot learn a new body structure,
and to our knowledge it is unknown whether humans can adapt to different body
structures. Another point raised by our results is that some body structures seem to
be easier to learn than others, irrespective of the number of joints. It would be very
informative to investigate whether this is an artifact of the learning procedure, or
whether there is some intrinsic complexity dependent on the succession of rotation
axes. Such various degrees of complexity have been described within the context
of manipulator inverse kinematics,5 where manipulators with the same number of
DOFs can have a different number of self-motion manifolds. If this complexity is
intrinsic, it would be interesting to look at the complexity of the human body
schema.
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Because this model of the body schema consists in a hierarchy of coordinate
system transformations, it can also be seen as a model of peripersonal space repre-
sentation. Although the concepts of body schema and peripersonal space represen-
tation have traditionally been considered separately, the recent theories of motor
perception8 and of a sensorimotor account of consciousness24 suggest that those two
concepts should be unified in a single framework. Indeed, perception and action are
densely intertwined processes,13 which cannot be easily isolated one from another.
However, within this work, we have not yet integrated the motor modality in our
framework. This can be done by deriving the Jacobian from the body schema, by
differentiating (2) with respect to the angles. This is one of the next steps intended
for a further improvement of this model.

Another intended development is to extend the implementation of this model
on the humanoid robot, and try to learn the whole body schema in a real setting.
This is certainly not an easy task, as explained in Subsec. 5.1. It is interesting to
note that most of the difficulties mentioned there are alleviated when considering
babies learning their body schema. Indeed, they have stereovision and a tactile skin,
it takes them several months, to learn their body schema, they are very flexible and
thus have no problem in seeing their feet, hands and legs, and their compliant limbs
allow them to explore their workspace much less cautiously (and thus faster) than
the robot is allowed to. So, in a way, it may be much harder for a robot to learn its
body schema than for a human.

7. Conclusion

In this paper, we have provided a general model of the body schema for humanoid
robots, based on a hierarchy of FOR transformations reflecting the body structure.
This model integrates the visual and proprioceptive modalities and allows a robot
to form a coherent image of itself. Moreover, we provided a way to adapt this image
as a result of sensory experience. This is done in a completely online and self-
supervised manner so that the system can continuously adapt itself, as is the case
for humans, who can adapt to visual shifts, tool use and so on. The effectiveness of
the model has been shown in simulations with a 24 DOF humanoid robot and in a
real setting for tool adaptation.

The results obtained suggest that the kinematic function (and for that matter
its inverse) of the robot should not be dissociated from its sensory abilities, as it
precisely provides the relationship between multiple sensory informations. Learning
this relationship allows a permanent recalibration of the sensors and is likely to
contribute to the precision, autonomy and adaptability of humanoid robots.
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Appendix A. Proof of Theorem 1

We consider Eqs. (3) and (4) as a continuous time dynamical system in the param-
eter space defined by l and a. Indeed, the learning step ε can be interpreted as the
integration constant of the dynamical system, in which case ε−1∆l and ε−1∆a tend
respectively to ∂

∂t l and ∂
∂ta, where t denotes the time.

In order to simplify the notation, we put the two parameter vectors l and a
into a single parameter vector, p = [lTaT ]T . We then consider the function E(p),
defined by:

E(p) = 〈Eθ(p)〉, with Eθ(p) =
1
2
‖T ∗(vn) − Tp(vn)‖2, (A.1)

where Tp is the estimated rigid-body transformation parametrized by p and depen-
dent on the joint configuration θ [Tp = l + Rθ

a(vn)], T ∗(vn) = l∗ + Rθ
a∗(vn) is the

real underlying transformation, and 〈 〉 denotes the expectation operator assum-
ing that θ follows symmetric pdf centered on 0. Since grad is a linear operator,
〈[ ∂

∂t l
∂
∂ta]〉 = −gradE(p). So (3) and (4) correspond to a gradient descent on E.

It remains to be shown that if ∂
∂tE(p) = 0, then Tp = T ∗, which amounts to say-

ing that there are no local minima to E. To this end we compute the gradient of E:

gradpE =
〈

(Tp(v) − T ∗(v))T ∂

∂p
Tp

〉
(A.2)

= 〈
(
Tp(v) − T ∗(v)

)T [I R̄θ
a(v)]〉. (A.3)

We can divide the gradient vector into its two components, gradpE =
[gradlE gradaE]. We then have

gradlE = (〈sin θ〉(a − a∗) × v + 〈1 − cos θ〉(vT aa − vT a∗a∗) + l − l∗)T (A.4)

gradaE = 〈
(
sin θ(a − a∗) × v + (1 − cos θ)

(
vT aa − vT a∗a∗) + l − l∗

)T

(sin θv↑ +(1 − cos θ)(avT + (aT v)I))〉. (A.5)

Developing this product leads to the following sum:

gradaE = 〈sin2 θ〉v ×
(
(a − a∗) × v

)
+ 〈(1 − cos θ) sin θ〉((v × (a − a∗))T

(avT + aTvI) + 〈sin θ(1 − cos θ)〉
(
v × (vT aa − vT a∗a∗)

)
+ 〈(1 − cos θ)2〉(vT aa − vT a∗a∗)T (avT + aT vI)

+ (l − l∗)T
(
〈sin θ〉v↑ +〈1 − cos θ〉(avT + aT vI)

)
. (A.6)

As the θ are zero-centered and symmetric, we have 〈sin θ〉 = 〈sin(θ)(1− cos θ)〉 = 0.
Thus, we have

gradlE =
(
〈1 − cos θ〉(vT aa − vT a∗a∗) + l − l∗

)T (A.7)

gradaE = 〈sin2 θ〉
(
‖v‖2(a − a∗) − vT (a − a∗)v

)
+ 〈(1 − cos θ)2〉(vT aa − vT a∗a∗)T (avT + aTvI)

+ 〈1 − cos θ〉(l − l∗)T (avT + aT vI). (A.8)
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Now, p is a fixed point of the dynamical system if and only gradlE = 0 and gradaE
is colinear to a (thus taking the normalization of a into account). Setting gradlE
to zero, we obtain

l − l∗ = −〈1 − cos θ〉(vT aa − vT a∗a∗) (A.9)

gradaE = 〈sin2 θ〉
(
‖v‖2(a − a∗) − vT (a − a∗)v

)T
+ (〈(1 − cos θ)2〉

− 〈(1 − cos θ)〉2)(vT aa − vT a∗a∗)T (avT + aT vI) (A.10)

= 〈sin2 θ〉
(
‖v‖2(a − a∗) − vT (a − a∗)v

)T

+ var(cos θ)
(
vT av + (vT a)2a− vT a∗aT a∗v − vT a∗vT aa∗)T

. (A.11)

With no loss of generality and to simplify the notation, we can drop ‖v‖2 and
consider v to be of unit norm. To further lighten the notation, we define c =
var(cos θ) and s = 〈sin2 θ〉 = var(sin θ). We have a fixed point if and only if gradaE
is colinear to a or, equivalently, if it is perpendicular to the projection of any vector
r on the plane orthogonal to a, (I − aaT )r. Hence we have

0 = gradaE · (I − aaT ) (A.12)

= s(−a∗ + aT a∗a− vT av + vT a∗v + (vT a)2a − vT avT a∗a)

+ c(vT av − (vT a)2a − vT a∗aT a∗v + vT avT a∗aTa∗a − vT a∗vT aa∗

+vT a∗vT aaT a∗a) (A.13)

= s(vT a∗ − vT a)(v − aT va) − a∗ + aT a∗a

+ c(vT a − vT a∗aTa∗)(v − aTva) − vT avT a∗(a∗ − aT a∗a) (A.14)

=
(
s(vT a∗ − vT a) + c(vT a − vT a∗aTa∗)

)
(v − aT va)

−
(
cvT avT a∗ + s

)
(a∗ − aT a∗a). (A.15)

We now notice that this last expression is the weighted sum of two vectors, v −
aT va and a∗ − aTa∗a. These are respectively the projections of v and a∗ on the
plane orthogonal to a. This implies that a,v, a∗ are coplanar and we can rewrite
(A.15) as

0 =
(
s(cos α∗ − cosα) + c(cosα − cosα∗ cos γ)

)
sin α −

(
s + c cosα cosα∗) sinγ,

(A.16)

where α is the angle between a and v, α∗ is the angle between a∗ and v, and γ is
the angle between a and a∗, as depicted in Fig. 14. Since γ = α∗ − α, we have

sinγ = sinα∗ cosα − cosα∗ sin α cos γ = cosα cosα∗ + sin α sin α∗. (A.17)

Inserting (A.17) into (A.16) yields

0 =
(
s(cosα∗ − cosα) + c(cos α − cosα∗(cosα cosα∗ + sinα sinα∗))

)
sinα

−
(
s + c cosα cosα∗)(sin α∗ cosα − cosα∗ sin α) (A.18)
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Fig. 14. Going from (A.15) to (A.16). All of the three fixed points a∗, a1 and a2 are located on
the plane defined by a∗ and v.

=
(
c − s

)
cosα sinα + 2s cosα∗ sin α − s sinα∗ cosα + c(− cos2 α∗ cosα sin α

− cosα∗ sin α∗ sin2 α − cosα∗ sin α∗ cos2 α + cos2 α∗ cosα sinα) (A.19)

= (c − s) cosα sin α + 2s cosα∗ sin α − s sin α∗ cosα − c cosα∗ sin α∗ (A.20)

=
1
2
(c − s) sin(2α) + s sin(α − α∗) + s cosα∗ sinα − c

2
sin(2α∗) (A.21)

=
1
2
(c − s) sin(2α) +

3s

2
sin(α − α∗) +

s

2
sin(α + α∗) − c

2
sin(2α∗). (A.22)

By performing the change of variables β = α− α∗, φ = α + α∗, we can rewrite this
last equation as

0 =
1
2
(c − s) sin(β + φ) +

3s

2
sin β +

s

2
sin φ +

c

2
sin(β − φ) (A.23)

= c sinβ cosφ +
3s

2
sinβ +

s

2
(
sinφ − sin(β + φ)

)
(A.24)

=
(

c cosφ +
3s

2

)
sin β − s sin

β

2
cos

(
β

2
+ φ

)
(A.25)

= (2c cosφ + 3s) sin
β

2
cos

β

2
− s sin

β

2
cos

(
β

2
+ φ

)
(A.26)

= sin
β

2

(
(2c cosφ + 3s) cos

β

2
− s cos

(
β

2
+ φ

))
(A.27)

= sin
(

α − α∗

2

) (
2c cos(α + α∗) cos

(
α − α∗

2

)
+ 3s cos

(
α − α∗

2

)

− s cos
(

3α + α∗

2

))
(A.28)

= sin
(

α − α∗

2

) (
(c − s) cos

(
3α + α∗

2

)
+ 3s cos

(
α − α∗

2

)

+ c cos
(

α + 3α∗

2

))
. (A.29)
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The first factor indicates that, as expected, α = α∗ is a solution. The other solutions
are given by the zeros of the second factor. If |c − s| ≤ |s|, i.e. c < 2s, this factor
has at most two zeros, so there are at most three solutions to (A.29). Since they
all lie on a circle, there is one minimum, one maximum and possibly a plateau. So
there is only one minimum in E, which completes the proof.
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