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. . . . a) Grap adapttion to external pearbaion
Abstract—In the context of object interaction and manipula-

tion, one characteristic of a robust grasp is its ability tocomply
with external perturbationsapplied to the grasped objectwhile still
maintaining the grasp In this work we introduce an approach
for grasp adaptation which learns a statistical model to adapt
hand posture solely based on the perceived contact between the
object and ngers. Using a multi-step learning procedure, the b) Polcy devdopmentthrough refinenert and reuse
model dataset is built by rst demonstrating an initial hand

posture, which is then physicallycorrectedby a human teacher

pressing on the ngertips, exploiting compliance in the robot

hand. The learner then replaysthe resulting sequence of hand

postures, to generate a dataset of posture-contact pairs thare

not inuenced by the touch of the teacher. A key feature of

this work is that the learned model may be further re ned by (
repeating the correction-replay steps. Alternatively, the mode
may be reusedin the development of hew models, characterized
by the contact signatures of a different object. Our approach is
empirically validated on the iCub robot. We demonstrate grasp
adaptation in response to changes in contact, and show succesgsf
model reuse and improved adaptation with additional rounds of
model re nement.
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Object interaction and manipulation is a challenging topic
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/% model
within robotics research. When a detailed model of the object

shape and surface properties is known, one can reason ab@}.ltl. a)Grasp adaptationWhen an external perturbation is applied on the
grasp optimality. However, the prior knowledge requiremembject currently grasped by the robot, the robot dynamicadigipts its grasp
s extensive - object properties like the mass distibutid Somel Wik e perriaon tguentew of o approach o eaing
or surface texture can be dif cult to obtain, for exampleg changing contacts is built and updated (topottom) by having a teacher
requiring force sensors or accurate tactile sensing - amd hdemonstrate a grasp and then re ne the range of possiblegyfaspdaptation
these properties change as the object is manipulated carf %1 C07C2e 2 PECact o0 K e, B e enced
dif cult to predict. When detailed information about the eb} by the touch of the teacher. Furthermore, the development @wamodel
shape and surface properties is not known, compromises likat is responsive to a new object is also possible througretmedse.
grasp sub-optimality and a strong reliance on accuraténent
sensing must be made. Object manipulation becomes even
more challenging within the context of dynamic interactipn
when the grasp on the object is not static.

In this work, the target behavior grasp adaptationthat is,
the ability to be intentionally responsive to external Esco
as to comply smoothly with external perturbations, all whil
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Index Terms—Force and Tactile Sensing, Learning and Adap-

tive Systems, Dexterous Manipulation, Multi ngered Hands ﬁ

I. INTRODUCTION
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works do not consider the additional goal of being intention
ally compliantand to follow perturbations [1], [2], [3], [4].
Smooth compliance in response to object perturbations when
grasping necessitates a tight coordination between akrag
S . . . else the grasped object might fall from the hand. Moreover,
maintaining contact with the object (Fig. 1a). The use otéor this coordination is typically ensured by a good knowledge o

or impedance feedback controllers offer robust solutians fhe hand kinematics and of the object shape [5], [6], [7]. T8]
the goal of maintaining contact with an object; however, Mog, .\ q g issue, rather than handcraft the coor(,:lina’tmn’ems
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of degrees of freedom in the ngers and the sensory signditerature that supports and motivates this work. Sectibn |
at play. Showing by example can simplify the speci cation ofhen formally introduces our approach to iteratively learn
coordinated postures between all of the ngers. If the exasp an adaptation model, along with the details of the control
are shown kinesthetically, by physically touching the robanethod for grasp adaptation. Hardware speci cations aed th
to move its ngers, demonstration also allows the teacher &xperimental setup are detailed in Section IV, and resuits o
provide the robot with an intuitive notion of force. the iCub humanoid in Section V. Section VI concludes with
Our work takes the approach of learning a statistical modelsummary and discussion of contributions, and directions f
able to predict a desired hand posture and ngertip pressutgure work.
from the current signature of the contact perceived at the
robot's ngertips. The approach depends on tactile sensing Il. RELATED WORK
the ngertips and human demonstration to provide an example
set of feasible grasgsThe approach does not require any,.
kinematic nor dynamic model of the hand nor object, unIikF\e
model-based manipulation approaches. Such requiremgats o
detailed model and consequently, precise sensing caiedili ) )
in practice can be an issue for many robotic platforms. bdte A- Dexterous Manipulation
the use of a probabilistic model allows for the encapsutabib In dexterous manipulation, one important task is to de-
the intrinsic non-linear mapping between the noisy tactdta termine the required actuator forces/torques to maintain a
and joint information, obtained directly from example gr&s grasp to an object [16], [6], [17]. When maintaining grasp
The dataset of examples is built both from human demooentact while modifying the current posture, grasp stabili
stration, and from self-demonstration by the robot after cas an important issue [15]. Indeed, if pose transitions are n
rection by a human teacher. In particular, our model derivesanaged carefully, undesirable behavior can appear, leg. t
from a multi-step learning procedure, that iterativelyl@isiia object can fall from the hand. This control problem is hard,
training dataset from a combination of teackdemonstration especially given that a robotic hand is usually composed of
teachercorrection and learnemeplay (Fig. 1b). Corrections a high number of degrees of freedom, and that precise tactile
are accomplished by having the teacher directly act on tkensing is dif cult to obtain, and also inherently sensitito
ngers of the robot. In contrast to other demonstration meclmotion and sensor signal discontinuities [18].
anisms like vision systems or data gloves, we suggest thain order to cope with these issues, model-based approaches
directly acting on the ngers allows the human to detect theere developed, which are based on known kinematic and
forces applied to the grasped object, and thus to achievalymamic properties of the hand and object [6], [19]. However
better demonstration of the applied forces. The dataset athese approaches require a quasi-perfect knowledge ofethe g
is built iteratively, as the teacher interactively corrects themetric relationships within the dexterous manipulatbjeot
robot's executions and thus re nes the learned behavior. gystem. A high quality model of the hand is thus necessary
key distinction in our work when compared to other iterativéo achieve very precise manipulator control and sensind, an
demonstration learning approaches [9], [10], [11], [12B][is such a model is not available for many robot hands [18], [1].
the focus on perturbations, that possibly take the exetdéip Moreover, because of the high complexity of the problem,
from what has been shown in the demonstration set. Our nowebtion and manipulation are usually preplanned, duringcivhi
formulation for avoiding over-generalization also ensutteat the quality of the grasp or intended manipulation is also
the robot's response is always valid with respect to the gtam optimized through various techniques and criteria [178][1
dataset. Our corrections furthermore aim not only to improy20]. Therefore, the application of these methods is reduce
upon a demonstrated behavior, but also to explicitly show general to constrained and controlled environments, and
additional exibility and adaptation beyond an executed@o rarely adapts online in realtime. Another drawback is thiahs
Our approach is empirically validated on th&€ub approaches typically require high specialization withpess
robot [14], building contact models for multiple objects oto speci ¢ hand-object combinations, and thus strugglehwit
different shapes and sizes. The effectiveness of the iiteratthe challenge of generalization to novel objects. With eesp
learning procedure is conrmed, by measuring an increase this issue, our incremental learning procedure suggests
across models in the joint ranges encompassed by a givense an existing model to bootstrap the development of a new
model, as well as in the smoothness of the adaptation amddel for a similar object. We will show that this procedure
the ngers' ability to maintain contact with the object whencan ef ciently reduce the time required to develop new medel
faced with perturbations. Although we overlook the anabfti ~ Furthermore, recent work has shown the necessity of having
force-closure constraint [15] during model training, wewh access to a rich set of sensory information in order to perfor
that the grasps learned using our approach do in fact s#iisfy manipulation tasks of increasing complexity [21], [22]],[5
constraint of force-closure. The bene t of self-replayléeting [23]. Through the use of such advanced sensing devices,
teacher correction furthermore is demonstrated. touch-based exploratory methods have developed thatvéisco
The following section provides an overview of the relatednd learn object properties and manipulation strategi®} [1

. . ) [24], [25]. In our work, tactile feedback and control simiia
1We assume the training dataset consists of only valid grasgs$, that the

grasped object doesn't slip or fall from the hand, as ensbsethe teacher's are learned from ?Xperience that the robot acquires byf itsel
supervision. through manipulation. However, we also take advantageeof th

This section provides an overview of related literature
thin the topics of dexterous manipulation, tactile sagsi
chnologies, reactive grasping and demonstration legrni



teacher's expertise within a programming by demonstratianteractive trial and error is used to grasp arbitrary ofgj§28],
framework in order to constrain the exploration to areas ahd grasp quality is improved by learning better grasp point

the sensory space that contain valid grasp only. locations [2] or responding to pose estimates from a learned
probabilistic model [30].
B. Reactive Grasping and Contact Maintenance Another promising research direction for helping to reduce

L . . .. the complexity of dexterous manipulation is demonstration
.A common motivation for reactive grasping strategies is to_ learning approaches [34], [2], [35], [36], [37], [38]
circumvent the need for a qetalled object model. By mea of these methods share the intuitive advantage of being
of low-level re exes [26] or h|gh-|eve_| behaworgl rules][4_a rglatively simple for a human user to transfer task knowéedg
grasp to_anllmproperly modeled object can still be achleveto. a robot. Within this line of supervised manipulation, the
Along this line, more complex methods incorporate Sensofy, o+ is directly taught by a human user how to achieve a
data to improve the current representation of the envirarime

L . : —grasp [37], [38] through a variety of human-robot interface
The limitation here therefore is the requirement of preu%mh as complex computer vision systems [36], [37] or data

sensing, which is not available for many robot platforms

. ) . ég'loves [39]. These data capture methods however do not allow
Data gathered through reactive grasping strategies is wse a human to perceive the forces that the robot actuall lie
estimate the position and orientation of a novel object,[RY] P y &p

. . . . to the grasped object.
systematically gather information about the object shaph, [ Hum%n d%monsjtrations are not used for grasp pose descrip-
[29] and to infer areas where the ngertip might safely b%o

n only. For example, in the context of grasp planning,
moved to gather more sensor dat"." [30].' Other.approaCheso%?nonstration data has been treated as statistical piors t
further f’md ggther shape information with the intent to dJUIIreduce the computational cost for searching for optimal-sol
an explicit objec.t model [.31].' . . tions [35]. Another example is to use the variability betwee
Another practical application for reactive grasping strat emonstrations to teach a robot in what way, and by how

gies 1s fo maintain contact after a grasp IS estgbllshed. T %ch, to react and adapt to environmental perturbationg [37
continued development of sensor technologies with indangas Learning procedures lend themselves naturally to itera-

sophistication [21], [22], [S], [23] promoted the use of ptie ive dataset building and behavior re nement. For example,
control schemgs such as force and impedance control [.361' human teacher might supervise the learning process, by
and later h_y brid meth_o ds [5]. These approaches are higrar odifying targets learned from demonstration [9] or resajv
:_:r?lltytcpmblnet(:]wnh h:gh”- level ?lnd prede ne'dtbehlflworavm mbiguities in goal representations [10]. Datasets ama-ite

at tnggers the controliers when appropriate. For examp ively built by providing new demonstrations in areas of low

ear_lyt v_vortkh proposedzédez; of L_Jtsing re exes to re lne 3” olicy prediction con dence [40], [41], by providing explt
maintain the grasp [26]. Security re exes are employe orrections on policy predictions to generate new data, [40]

recover a I.OSS of contact [32], and fuzzy Iogi_c rules speci ] and by physically touching a robot during execution to
a change in contact normal based on perceived forces [ ovide kinesthetic corrections [11], [42], [13].

Contact recovery behaviors are triggered by tracking teaipo As discussed in the introduction, a key distinction between

tactile data to dﬁteCt slip LS] [3f4]' A g[]asping f?rC$ s Wb' our work an other policy re nement approaches is the focus on
to cpunteract the perturbing force that results from o Je.ﬁrerturbations, which possible take the learner far fromtwha
manipulation by the robot [8], and force feedback control vas demonstrated, and the intention to show exibility and

gseq for stapilizing the grasps during explicit _nhger repos adaptation beyond what was demonstrated. Furthermore, our
tioning for object rotation and translation behaviors [Gther executions do not depend on time (unlike [11], [42], [13B, a

approaches pair uppgr-level controllers that_target_ goaspSs ) goal is not to execute a trajectory but rather to respond
with lower-level reactive controllers that avoid collis®[30], . iine to changes in contact with an object
[2]. '

As mentioned in the introduction, our work is distinguished I1l. APPROACH ANDMETHODOLOGIES
from existing reactive grasping approaches by its aim 10 beé\a now overview the details of our approach for iterative

compliant to external perturbations; furthermore, thisn€o g o< adaptation learning. In this work, we consider the cas
pliance is learned rather than being hand-coded. The léarjg, o e the location of the contacts between each nger and the
statistical model determines how to coordinate the motibn 8bject remains xed throughout adaptation (Fig. 1a). Fivg

all the ngers when responding to external forces. Our graggy gescribe the variables at play in our approach, as well
adaptation paradigm however does employ hierarchicaf@ont, ¢ o architecture of our system (Sec. IlI-A). We will then

techniques similar to those used in reactive grasping,ghouyeqcribe our algorithm for iteratively building the adajuta

with a novel formulation for smoothly switching from highermodel by generating a training dataset over multiple steps
priority position control to force control. The switch ocsuf

under teacher supervision (Sec. IlI-B). Further, we previd

the current pose is suf ciently close - according t0 @ metrigppica| description of the statistical model (Sec. l)lahd
learned by the probabilistic model - to the target pose. i ;se during behavior execution (Sec. I11-D).

C. Robot Learning A. System Architecture

Information gathered through reactive grasping proceslure The state of our system is described by three main vari-
also is used within learning contexts. Data gathered througbles. Thecontact signature 2 RN corresponds to the
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Fig. 3. Schematic overview of our system and approach. Theptomel
Fig. 2. a) TheiCub hand and corresponding joint angles of thdigits used corresponds to the initialemonstrationwhere the robot's hand is controlled
in our empirical validations. Each black ngertip of the handnsists of a by the human teacher through teleoperation; the middle panehddel
tactile sensor array) By pressing on the ngertips, the teacher demonstratag nement or reusethough corrective feedback while the robot is executing
to the robot the range of candidate hand poses for adapfitim surfaces). its current model; the bottom panel self-demonstratiomf the sequence of
c) In this work, the contact signature of each nger corresponds to the corrected poses in order to obtain a training dataset thadticorrupted by
contact normald) A perturbation applied on the object results in a changthe touch of the teacher. From these data, a new model is thantéch may
in contact signature. With this information, our learnedcte® controller is further be re ned or reused.
able to adapt the grasp in order to maintain the contact wihottject.

3-dimensional contact normal direction at each of the Algorithm 1
ngertips when in contact with an object, composed into a Given a model ;
single vector B = 3 Nf)._2 The hand pose 2 RN 1 Tactile Correction
denotes the joint con guration of a robotic hand having for t2f1:Tg
N degrees of freedom (DoF). Finally, tle®ntact pressure Model ; 1 predicts("';$") given current *.
s 2 RNs corresponds to the pressure values measured on Controller executes targéf'; 8')
each ngertip? An illustration of these variables is shown in Teacher adjust pose, resulting in a measurergefts').
Figure 2. end

In our approach, we assume that these three variables are
suf cient to determine the grasp of an object. As illustchte 2. Self-Demonstration
in Figure 1b, we iteratively gather datasets of such grasp COMfoller executes target sequerite,

. . Result: Sequence; = f ;st; ' g of pose-pressure-contact
variables from teacher demonstration, and subsequertly, f tuples. ' t=1
teacher correction. We then learn an estimate of the joint
distribution of these three variables as a probabilisticdelo 3. Model Learning o

. During behavior execution, the model is used to generate a YS¢ 9812 i 10 train a new prediction model; .
mapping 7! (";8) that predicts a target hand pose and
desired contact pressure given the current signature of the
contact between each ngertip and the objedis shown in
Figure 3(middle), which provides a schematic overview af ou 1) Demonstration: In the absence of an existing model,
system, these predictions are then fed as control signalsato initial target hand pose is demonstrated by the teacher
a feedback controller that generates torque commands to (Riy. 1b). A small dataset of pose-pressure-contact tuples

Result: Sequenc#; = f !;s! gT

=1 of pose-pressure pairs.

nger motors. o= f(5st ‘)gthl are recorded (see Fig. 3(top)). From
these data, an initial task modey}, is learned (Sec. 11I-C). As
B. Iterative Building of the Dataset model development is done along several iterations, we will

We now provide the details of iteratively building theindex each variable accordingly. For instance, a modehksar
prediction model, by generating a dataset over multiplpssteafter thei™ iteration will be denoted by ;.

through teacher supervision. This method is summarized |n2) Tactile Correction:In our approach, a model of the task

Algorithm 1. . . . o :
9 can be re ned multiple times. During thé" iteration, the
2Taken more generally, the contact signature could refer tariety of te€acher provides corrective feedback while the robot exscu
metrics (e.g. tangential force vector, contact area), deipgron the task and the task using the previously learned prediction modgel;.

fobot platform. : Given the current contact signature the model sends control
In our implementation, we sum the pressure measurements of easbrs

. /\_ . .
located on the same ngertip to a single value per nger, and\so= N;. Signals (";$8) to the hand Cpntm”em (F'g- 3(m|ddle)_)-
4We adopt the notatiort for a target value of prediction variable Concurrently, the teacher provides corrective feedbacty



on the robot's ngers’ Figure 2b provides an illustration of [43], which allows us to predict a desired nger postirand
tactile correction under our implementation, where theliea contact sensor reading given the current contact signature
gently pulls or presses on the robot ngers to repositiomthe . The ability of GMM/GMR to generalize and extrapolate
within their compliance limits. As during tactile corremti, well over missing and unseen data has been shown to be
the teacher changes the hand posture and accordingly @soethcient in many experimental settings [44], [45]. In unsee
contact signature , the model predicts new targets; 8) for contexts, other non-linear regression methods such asstaaus
the controller. The result is a sequente = f( t;st)gtT:l Process Regression converge to a default mean value. With
of T pose-pressure pairs. Contact signaturis not recorded, respect to our task, if this value is badly tuned, it can lead t
since it is considered to be unreliable on account of theamint unstable grasps, and therefore to task failure. The prosiabi
with the teacher's hand in addition to the objéct. encoding of GMM/GMR also has the advantage of being able
The teacher provides corrections to (i) encourage betterdetermine whether a point in the input space is likely unde
contact with the object and (ii) shift the pose as much &8e learned model. This ability to determine the likelihood
possible within the compliance constraints of the handJavhiof a query point is a crucial property, as outside the regions
still maintaining contact. Whether the corrections areridtel  covered by the training data inference can be unreliablé, an
to re ne the current model or develop a new model depenéiénce possibly poor. As will be described in Section I11-B w
on whether the hand is interacting with a novel object. If,yetake advantage of this property to ensure the validity of our
then a new model is being developed from teeseof the model prediction.
current model. Note that for reuse to be feasible (i) the hove In a GMM, the joint probability distribution of all variabde
object must be of a size that is within the compliance limfts ¢s encoded as a sum & Gaussian components,
the robot manipulator when maintaining a posture apprigpria
for grasping the original object, and (ii) the set of adniiksi L X
hand pose for the novel object should partly overlap that of (st )
the original object.

3) Self-DemonstrationThis phase generates the data whicljhere p is the prior of thek® multidimensional Gaussian

will be actually used to train the new prediction model. AEomponent and «: « are respectively its mean and covari-
shown in Figure 3(bottom), the sequenteof pose-pressure gnce such that

pairs from the tactile correction phase are sequentiallyae

peP( 35Sy ks k) 1)
k=1

targets to the feedback controller. During this phase, thés 0 ” ! 0 K s k " !
role of the teacher to verify that the execution of this cohtr |, = @ sk A k= @ " o5k s K A
sequence produces a set of valid grasp, i.e., ensuringhbat t " K s K "
object doesn't fall from the hand. If not, the correction pha ' ' )

is restarted. As a result, a sequenge= f( ';s!; t)gtT:l of In order to train the model parameters from the data, the
T pose-pressure-contact tuples is obtained. Note that mow,Bxpectation-Maximizationalgorithm is used [46]. In our
the absence of any touch from the teacher, all of the vasabkxperiments, our dataset contains betwd®®0 and 2000
relating to object contacts( ) are considered to beeliable datapoints, and the value d&f is set using theBayesian

and thus are recorded. Information Criterion (BIC). Figure 4 shows an example
probability density function estimated by a GMM on a self-
C. Model Learning demonstration dataset.

The nal phase of the algorithm is to learn a statistical 2) Modeling the Uncertainty of the Query Inputshe

model ; from the recorded datg . Without loss of generality, model is Ieatlrnﬁdtfrolm a dataset_tchqnte;wlng OI?%M por;s:tr- i
we omit the index in the rest of this section to lighten thePressure-contact Lpies seen within “Ihe sef-demonairatl
notation. dataset. As this dataset was recorded in the absence of actua

1) Statistical Model:We model the self-demonstration dat(f)(tem"’lI perturbations, the demonstrated grasps belgrigin

as aGaussian Mixture Mode{GMM) [43], and hence get a this set have all ngers in contact with the object. In thesprg
probabilistic encoding of the joint distribution of the iahiles, ence of such perturbations, however, one or more ngers tigh

ie.p( :s. j) . This choice of probabilistic encoding haéose contact with the object, producing a contact signature

the advantages of capturing the non-linear correlatioasept that is random (due to sensor noise) and thus unreliable.

in the demonstration and sensor data, as well as of encapsula?Ve_therefore introduce a reliability measure for each

ing the inherent noise present the sensory signals. Furtre;  N9€MP | = flé:Nf g. For the currently perceived contact
Gaussian Mixture Regressiq®MR) provides a closed-form Signature j 2 R of each nger, its reliability measure; 2
solution to compute the conditiona( :sj :) of a GMM [0:1]is avalue that depends on the current pressure reagling
of the corresponding senor. We consider that the stronger th
5We assume a robot manipulator that allows a human teacher to mmate s contact sensor reading, the more reliable the contactsigna

pose adjustments, either because of some inherent compleagcmechanical gnd so
slack in the ngers, or the existence of explicit reactive ioos. )
<

SArguably contact pressure, and not just contact signature, is also 0 Sj gmin
polluted by the tactile correction technique. However, eioplly better o (s Smin)z(smax Smin) gMin < g, < gmax 3)
performance was seen by using the controller with ingutss) during the i . | J
self-demonstration phase rather than just replaying theese® of poses. 1 Sj smax



1) Projection to the Input SpaceDuring the execution of
the adaptation behavior, we rst check whether the current
query point is likely enough with respect to the mo8elf

it is not, we use a projection’ of the query point from

/ which the model predicts the desired joint con guration and
40 A ngertip pressures. This projection is chosen such thatis
the closest point from with a suf cient likelihood under
the model. This operation is required for two major reasons.
First, the prediction of a GMM in response to an input with
low likelihood is a point that is likely to be far from the main
distribution and hence, under our model, unlikely to be &val
grasp. Importantly, as generating an invalid grasp can tieve
consequence of leading to adaptation instability, we have t
ensure that all generated grasps are valid under the maslel, i
belongs to the set of grasps shown by the teacher. Second,
the regression aims not only to allow the robot to adapt to
changing contact signature, but also to prevent the roloot fr
Fig. 4. lllustration of a GMM encoding within a subset of theinj _be_zhavmg too far from what has bee_n shown. For Fhese reasons,
angle dimensions (the three degrees of the thumb). Arrowscaslithe it iS necessary for the model to forbid the generation of rest
corresponding location of example hand postures A-E (shawtop). and contact patterns that are too different from the exasnple
in the training dataset.

where s™" and s™* are threshold values on whether the In order to determlne_ i query point |s.l|kely under _the
. . : . 7 model, we de ne a similarity functiorf ( ; ) that assigns
contact signature is considered to be reliable or'not.

To incorporate this information, we derive a new jomﬁe;atfgrsﬁpmtal Zf tEihm.EUt. Zp;]age, with reliability , a
probability distribution from the original learned mode| that 'p vaiue which 1S giv y
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additionally depends on the reliability of the input signal: X
» f((i) = N & ™ w) 06
pis; 5 ) = PP s Tk() @) _ =
k=1 whereN is derived from a normal distribution whose output
wherd = ( 17 1, 1,05 NS ne: N, )T and the new has been normalized betweérandl, i.e.

covariance matrices are given by Noc © ) = exp %(x T x )
i +diag( log( )); ifi=j=
ik otherwise In comparison to the marginal likelihoga ; ), this mem-
bership function has the advantage of considering each-Gaus
sian component to have the same importance, irrespectifely
The distribution thus now additionally considers a joirdtdi  the proportion of datapoints that have been used to traih eac
bution from unreliable contact signatures to learned valabp componentd? This effect is the result of (i) the absence of the
con gurations, the importance of which will become moreriors in Eq. 5, and (ii) the normalization &f . With respect
apparent when describing the regression procedure inddectio the second reason, a pointthat is located within a given
lI-D. Note that is an additional prior orp( ) given the distance (in the Mahalanobis sense) of a Gaussian willvecei
current (potentially unreliable) sensor reading. It coenpénts the same value, irrespective of the size of its covariance.
the variability learned by the model, which originally cese  We then search for ’, the closest point to the current query
only the space of contact pressure readings seen during sgffint , that has a membership valdi€ °; ) higher than
demonstration, all of which were the result of valid grasps.a given threshold .*1. In our previous work [42], we used a
closed-form solution to this problem, since for a given poin

Tk ()=

wherei;j 2f ; ;s g

D. Grasp Execution
. s . %In practice, we did not consider the likelihood in its stsense. As will be
Once a model is learned, it is used to prEdICt the eXpea(‘j:'-:-gcribed in the next paragraphs, we rather consider a memjbdusiction

joint con guration” and the expected pattern of pressure valugat is derived from the likelihood. It has the main advantageancelling the
§ at each ngertip, given the current contact signature effect of the variable proportion of data-points used tantesach component
These two variables will then be used to generate the grasp {he GMM. , . .

. : . . Because of the nature of our data collection paradigm, i.emam
commanding the feedback controller, which will be desaib&jemonstration, several feasible grasp may be shown more tiendthers.
in Section I11-D3. Learning from such a non-uniform dataset induces a biasthegpriorspy

) of each component of the mixture, which may compromise the setect
"The value of these parameters is strongly sensor depersif¥hshould be grasps that were shown less frequently by the teacher.
set to a value slightly above the residual noise producecbysensor when  11To x the threshold in our experiments, we consider that a point
there is no contact, angi"® to a value corresponding to a decent pressure belongs to the model if its Mahalanobis distance to any commone

being applied to the ngertip sensor. of the GMM is below = 2 standard deviations, which corresponds to
8Each ; appears in triplicate to account for tBedimensions of | 2 R3. =exp( 1=2 2).



where ( ?; ) is the posterior probability of the™ com-
ponent responsible for the query inpuf with reliability
Here, we can observe the effect of the reliability measure
on the regression. For unreliable contact pressure resding
ie. = () !1 , the conditional will simply ignore the
contribution of ?, and thus output the mean hand posture and
contact sensor reading of the model. In contrast, for ridiab

pressure readings, i.€7 () ! «» the conditional
L | becomes equivalent to GMR on the original GMM. The same
- fa, principle applies if one or more ngers are no longer in
oL —6.4 ‘ —6.2 ‘ 6 ‘ dz ‘ contact.

. . . . . . . 3) Finger Actuation: To control nger actuation and
Fig. 5. Two-dimensional illustration of gradient ascent be thembership .
function for several input query points with the can object. Light dots achieve the targets produced k_)y the model, we dene a
correspond to initial query inputs, dark dots to valid query inputs?,  feedback controller that takes as input the error betwergeta
contours to parts of the space with constant membership ¥dlue = 1), and current grasp con guration. Since in practice it is pftmt
and the thick contour to threshold value Shown for two dimensionsy(z) . . L. . .
of the contact signature for the index nger). possible to sat|sfy. both position and force constrgmtsgﬂm
taneously, we design our controller to blend the minimaati
of both error signals in a continuous manner.
in the input space, only a single Gaussian component wasThe general idea behind our controller is to give priority to
considered at a time. In our current formulation, a singl@po position control, so that force control is progressivelsivated
in the input space lies within a mixture of Gaussians, arab the current posture gets in the vicinity of the targetyrest
so there exists no closed-form solution. We therefore adofi get an estimate of how near the robot is to the desired
an iterative method. Given threshold if f( ; ) < we posture, we compute a positional error measuge[0::1] that
perform gradient ascent on the membership function, until is weighted by the inverse of the covariance of the condition

is found. The gradient of this function is given by along the dimensions of the hand pose,
1 1
@ X( — - - =N T A N
i) = TN T ) = S0y 0 ®
k=1 N 1 In detail, position control is handled by a Proportional-
k() «) (6) Integral-Derivative (PID) controller minimizing the errdn
; ; ; ; d posee = " and force control is handled b
and an illustration of the result of this procedure is showh2nd POSE o _ y
in Figure 5. Note that foff ( ; ) , gradient ascent is & Proportional-Derivative .(PD) contrtzller using the .targe
unnecessary and henc€ = . contact sensor valug¢ and |t§ errores = 8 s . Blending
2) Model Prediction via Regressior®nce a valid contact between the two controllers is accomplished via factosuch
signature input ’ is obtained, the next step is to estimatéhat 7
. N\
the desired posturé gnd pressures_ lfor the ngers. Thus, noarg =(1 ) e+ e+ ' edt
we compute the conditional of our joint probability model by
means of Gaussian Mixture Regression [43], which gives + M (S84 Zes+ 2es)
, N N N (9)
sioa 5 N ; S 7 . - . .
P( 5s] ) 8 APSA (") wheree andes are the time derivative of the error in position
with expectation and c_ontact sensor readl_n_g, respectively. The rst termhef t
equation handles the position PID control, and the secand te
A X - K the force PD control. Thus when far from the target posture
= k(5) Ko+ | e :
4 B sik ( ! 0) position control is employed, and when near the target
k=t posture (! 1) force control takes over.
ke~ (y)y V7 N The matrixM 2 RN RNs maps the signal of the
s ik ’ ’ force controller to the motors of each joint responsible for
and expected variance minimizing the contact sensor reading error of each nger.
% Each elemenM;; of this matrix is given by:
AS = 20%) ik s ik < 1 if thej™ contact sensor is mounted on the
s ss k=1 s k ssk # Mj = . same nger than thé" motor
N T " 0 otherwise
k - . () k . .
s K k s Kk Finally, 7; ®; '; ¢&; &; 2 are the gains of our con-
troller.1?
?. .~
2. _ p(k) N vk k() 12In our implementation these gains are tuned by harfd<£ 60; 9 =
k5 - P - ] 7, 1=2; ¢=30; 2=25; ¢=5)Note that these gains operate on

K VN . ~
i=1 p(i) ) i ;k( ) values of current, which are then mapped to torque commandkdanbtors.



on a ngertip, we de ne a directiom; 2 R corresponding to

the unit vector normal to the nger surface at the sensor-oca
tion. From this, we compute the global directional respéhse
rj? of each ngertipj as the sum of thlgse normals weighted

3 by the response of each sensor, ri.J?e.= i Bi;i ri. To obtain
r* the three-dimensional contact directiorp, we normalize the
global response, i.e.,; = r’=kr k.

B. Demonstration Interface

Demonstration is performed via teleoperation by a human
Fig. 6. Fingertip sensor technology (a). Each sensor of engingertip teacher, who simultaneously controls théDoF of the iCub
(b) is associated with a unit vector, normal to the nger surface at the phgn( Teleoperation is accomplished through a joint réngrd
sensor location (c), whose magnitude is scaled by the seaspomse (colored ’ . .
surface) (d) when estimating contact normal (). system and a mapping that allows the human to directly cbntro
the motion of the robot hand by moving her own hand, during
which the robot records from its own sensét3he data glove
IV. IMPLEMENTATION DETAILS (Fig. 1, top) worn by the teacher contaifhd torsion sensors
that detect the angle of the joints in the human hand. We then

The implementation details of our empirical valldatlonmap the human joint angles to the joint angles of the robot

are provided here, with regards to robot and demonstratiﬁn o o
: ; and, thus accomplishing remote control. A key limitatidh o
hardware, as well as to task domain and evaluation. . ot . ;
this teleoperation interface is the absence of haptic faedb
for the human, making the demonstration of a satisfactasile
A. Robot Platform and Tactile Sensors of contact - this is neither too strong nor too weak - dif cult

Our approach is validated on a human-child sis@&DoF !0 estimate.
robot, theiCub [14]. The hand of the iCub (Fig. 2) ha&&
controllable DoF. Each nger, as well as the thumb, consisfs. Validation Task
of 3 phalanges. A single motor controls tBgoints between  Task models are built for multiple objects, beginning with
the 3 phalanges with a single cable, and an additional motarsingle demonstration and following withrounds of re ne-
controls the joint between the digit and hand, for a total ehent via repeated correction-replay-learning steps. Vier re
2 controllable DoF per digit. Control of the ring and pinkyto these models as tHeemonstration-Re nement-Re nement
ngers is coupled. Finally, an additional motor controleth (DRR) models. Speci cally, task models are built for the
opposition of the thumb. The tendon system of the robot harsliowing 4 objects (Fig. 7): a small cylindrical carb:fcm
allows for a small amount of compliance in the rst joint, andiiameter,14:6cm height), a large cylindrical caré:6cm di-
a larger amount in the second joint (towards the ngertip) G{meter,11:7cm height), a box&0cm 6:0cm  3:0cm) and
each digit. a straightedge rulerl(4cm 31:6cm). Each model is learned

A ngertip sensor array 145mm 14mm) is mounted at 3 times.
the end of each nger and thumb (Fig. 6a). The array consistsReused models also are built for multiple objects, begignin
of 12 capacitive pressure sensing nodes and the electroniigh an existing model and following this with round of
processing for the A/D conversion [47]. The ngertip isre nement when interacting with the new object. We refer to
made of compliant and deformable silicone patches whoggse models as theUse-Re nement (URnodels. Reused
capacitance varies when pressure is applied at the surfagedels are built for and from the following objects: for the
Consequently, with this array it is possible to measureaxint small can from the big can (different size, similar shape), f
direction and magnitude at different locations on the riger the box from the small can (similar size, different shapea) an

In the experimental work presented in this paper, the thunfor the big can from the box (different size, different shape
index nger and middle nger are utilized, but not the twoEach task model developed from model reuse again is learned
coupled digitst® The pose of the hand therefore consists & times.
the joint angles for each of th& controllable degrees of During correction, the can objects are perturbed by pulling
freedom in the3 digits utilized, plus the joint that controlsa can side to side, in sweeps that run parallel to the length
thumb opposition, and so 2 R’. We de ne the sensor of the robot palm, as well as pitching the can forwards and
readings 2 R® as a vector containing a single real value fobackwards (Fig. 7, left). The box is perturbed in a similar
each ngertipj 2 f 1::3g, taken as the summed response ovéashion. The ruler is held vertically and perturbed by gitgh
all sgpsor nodeg;; ;i 2 f 1::129 on the given ngertip, i.e. it to the either side (Fig. 7, right).
S; = ;psi . We further de ne the contact signature2 R®
as a vector containing an estimate of the contact normal on FOr our experiments, considering the existence of a singlenadel

. . . . . pressure zone for each ngertip is a fair assumption.

each ngertip. As illustrated in Figure 6 (c,e), for each sen 15Note that the mechanism used to provide tactile correctidmg gently
pulling or pressing on the ngers - is only able to move the ngevithin
13The choice of not using the two last digits is motivated by rthigiht  their compliance limits for a given posture. Transitioning aasuf ciently

coupling. A single motor controls the motion of both ngers,dathis different posture, like the transition from an open to pacibsed hand, must
underactuation makes them dif cult to use for ne manipulatimsks. be achieved through another mechanism, for example teleaperat

e)



Correction Correction

Reproduction Reproduction

Perturbation

Fig. 7. Tactile correction for learning grasp adaptatiohe Teacher indicates adaptability within the compliancestraints of a hand postur€g¢rrection).
The learner then replays the sequence of corrected pBssgduction The nal learned model is able to adapt the pose in respoogtfferent contact
signatures Rerturbatior). Objects: small can (left panels), ruler (right, top), Ergan and box (right, bottom).

D. Task Evaluation can handle. The teacher also pushes the object within the
fehot ngers’ compliance limits, past the postures preelict

We assess the performance of our approach by evaluat h dol ia thi luati h f
the evolution of the quality of the models across each legrni the model. lijurim%t Is evaluation, we gather a sequence o

phase. During the development of DRR models, we compaiamplesf( s ';s';™;8")gl; at a rate of20ms for a total

the execution quality along the following model progressio duration of aboutl5 seconds. From all of the samples, we
only retain those that are considered to belong to the model,

ol T1! ol T2t according to the same criteria used to estimate nearness to
a target posture when blending position and force control

where g is the model derived from the initial demonstration(Eq. 8). The following metrics are then used to evaluate rode
~; follows immediately correction of the initial modely be- performance for each testing set:

fore self-demonstration”™; was thus learned usingnreliable

sensory data gathered directly during the correction phase Range of MotionThe difference between the minimum
is the result of one full correction cyclég;, follows correction and maximum joint angle values for each nger:

of the model ; beforeself-demonstration, and, is the nal i
model obtained after the second full correction cycle.

In order to demonstrate the ef ciency of the model reuse
paradigm, we compare the quality of three models. First, we
consider the immediate reuse of the modd\, learned on
objectA after2 rounds of correction when applied on a novel
objectB. Then were ne this reused model by performing a ~ 970UP)-

maxizg .y | MmNz

In order to reduce the number of variables to analyze,
we combine the range values irdagroups. We consider
the sum of both joint angles for each of tBengers (3
groups), and separately, the thumb opposition angle (

complete correction cycle using objd8t producing a model Time in Force-Closure The percentage of time where
that we denote as ?*. We then test it on objed . Finally, the three ngers are in contact with the object and the
we compare the latter's performance with the mod§l that resulting grasp attains force closure [15]:

was previously learned from scratch via demonstration with 1 ™ N (s> 0)and(FC( '; ') > 0))

objectB. Noi=1 '

The force-closure functio®C( ; ) 2 f0;1g is com-

To evaluate each model, the controller and model are run puted using the method described in [48].

while having the teacher physically perturb the object to
explore the full range of possible hand poses that the model Contact Error. The difference between the target (model-
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Can object Box object A. Model Re nement

eigy(q)
| ee@ - To look speci cally at the effect of re nement, comparisons

will be made between modelsg, ; and ,, on each of
% the four objects. Furthermore, the necessity of self-sejda
highlighted, with the comparison of modefs, vs. 1, and
O e T2 VS o
in(0) 1) Larger Joint Angle Rangestactile corrections were able
to provide to the models a broader range of postures that
enabled grasp adaptation. Figure 9 reportsréimge of motion
averaged across all objects for each phase of our teaching
process, while detailed results for each object are given in
Table I. A signi cant trend of increased range of motion was
seen across objects, for all joints (p-valpe< 0:001, two-
way ANOVA'®) as well as within objectsp( < 0:05, two-
way Student t-test’) Moreover, this trend continued with an
additional round of re nement, as the models of all objects,
) except those of the ruler, displayed their largest rangts af
om0 e om0 e the second round of correction-replay-learning. Thisedéhce
Fig. 8.  After several rounds of re nement, there is an incee&s the in behavior across ObjeCtS was marked by the signi cance
range of motion that a model has learned and hence, can use dep grof the interaction term of the ANOVA, i.e., the object type
adaptation. Example data i_s giyen for tw_o_different ot;jeash(mns). The \was an important factor in explaining the statistical resul
axes correspond to the projection of the joint spac R’ on the rst two . .
principal components. Contours correspond to parts of theeswith constant Nevertheless, removing the ruler from the testing dataset
marginal likelihood valuep( j) , given a learned task model. canceled this interaction. The reason is that the range gérn
postures with which the ruler object can be grasped is small,
and thus can be demonstrated in a single re nement cycle.
predicted) and actual (controller-executed) contacteslu  Figure 8 shows two examples that illustrate the growth of
averaged across all timesteps of the perturbation: the region of thg joint-space that has been learned aftdr eac
17N i sk round of correction.
NI § 2) More Stable Contactfigure 9 also reports the time in
wherekxk, denotes the L1-norm of. force-closure averaged across all objects. This time signi
ShakinessThe difference between the raw and smootheghntly increased with one round of re nementg(vs. 1)
joint velocities, averaged across the testing period: ~ for half of the objects, as well as across obje¢ts<(0:002).
1PN This measure however appeared to stabilize after one round
ERERUS N ) _ of re nement, and did not really improve with a second round
where the smoothed velocity: is computed via win- ( ; vs. ,). However, given that the range of motion displayed
dowed averaging over 2 (window size =0:4s). by the models drastically increased throughout each round

. . o of correction, the important result is that the time in force
The Time in Force-Closuraneasure provides an indication of P

- . . . . closure did not decrease. Paired with the observation kieat t
grasp stability and adaptation quality, where higher mestis variance slightly reduced, these data suggest that, asith oés
lower variances suggest constant contact with the objedtt ’ ’

) : nement, the grasps produced by the adaptation mechanism
thus, ef cient grasp adaptation. Theontact Error measure grasps p y b

lates 1o h Il th del i ate ad t.are more stable. Such a conclusion is further supportedéy th
relates to how well the model provides appropriate adaptali,, v, error data (Fig. 9), which signi cantly reduced hwit

inputs for the controller, where low error corresponds te tr}e nement across all objectsp(< 0:001). The model thus

gontroller regularly bglng able to attain the pred|ctedugal more consistently made predictions that were appropriate f
(i.e. smooth adaptation commands). TRange of Motion

ints 1o th . f the | q HuLcontroller.
measure points 1o the responsiveness of the learned mo e’owever, the transitions between hand poses were not
with a high value indicating adaptation over a large range ff

! . . ound to become signi cantly smoother with re nement, as
hand postures. Th8hakinessneasure highlights instances of _ . g . .
indicated by the shakiness measure in the average over®bjec

(Iéig. 9). Nevertheless, this trend we expect is also rel&ted
the explored range of hand poses, which increased at each

Model Wy

Model W,

eig,(q)
-40 -20 ) 20 40

Model: W,

jerky or sudden movements, via high values that indicate
sharp change in joint angle velocity.

16A two-way ANOVA using factorsF;: object type=f small can, big can,
V. RESULTS box, ruleg and F»: training phasef ;; ;g was performed on selected
! pairsi andj of training phases. Our testing data sample consisksrepeated
measures for each category.

This section presents the ndings of our empirical evalua- 1"The Student t-test was performed by comparing the resultsinglota

. . . between the selected training phases for each object $elyarBhe small
tions. Task models for multiple objects were successfuliito ymper of samples3( repeated measures per object and training phase)

re ned and reused with our approach. motivates our choice of considering a higher p-value forisignce.



Range of motion for the following joints:
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Deg]; Thumb opposition Degl; Thumb finger [Deg] Index finger [Deg] Middle finger
120 60 60| 60
80| 40 40 40
p-values:
40 20 20+ 20 ** p<0.001
*p<0.01
0 - ~ - 0- . . 0- u - 0- - -
Wo Wi W W W, Wo Wi Wi W W, W Wi W W W, W Wi W W W,
ITJ L1 ITJ L1 L1 L1 ITJ L1 Improvementby
3/4 14 1/4 1/4 1/4 0/4 1/4 1/4 s riimeraien
L IL | L IL | L IL | L IL |
*¥ *¥ *¥% *¥ *¥ *¥ *¥% *¥ Improverrentby
4/4 3/4 4/4 3/4 4/4 3/4 4/4 3/4 refinement
Time in force-closure Contact error Joint shakiness )
= [Degls] Model leaned fom:
100%- = W, | Initial demonstaiion
é 15 0.1 \7V1 15t round of reinement, w/o sé-demonstation
80%-] 10 W 15t round of refnement, with sel-demonstraon
0.051 Wz 2" round of reinement, w/o séf- demonstation
60%- > W, | 2" round of reinement with selftdemonstraon
w A A 4 4 4 ! 1 o | |
W Wi W W W, W Wi W W W Wo Wi W, W W,
1 1 1 1 L1 1 Improvenentby
* * *¥ *¥ -
14 34 a4 44 o4 o4 sef-demorstraton
L 1l I L - 1L . ] [ Il ] Improvenentby
XX
2/4 0/4 2/4 1/4 1/4 0/4 refinement
Fig. 9. Evaluation of policye nement Range of motion, time in force-closure, contact error andistess measures are given for each model produced

during the development of thBemonstration-Re nement-Re nemef@RR) models. (Average values across 3 repetitions of theraxents for all objects.)
Below each plot, stars indicate signi cant improvements lestw training phases. Ratios reports the number of objectsti@n separately, exhibited an
signi cant improvement across each phape<( 0:05).

correction cycle. Again, the important result is here theg t acquired previously. To illustrate this argument, Figure 1
shakiness measure did not increase. shows the model encoding for the contact signature data of

3) The Utility of Self-Demonstratiorfor all object models, two different objects. As can be seen, the areas covered by
an increase in performance according to almost all measueaeh model include a lot of overlap, and thus the reuse of the
was observed following self-demonstration compared to tlk@owledge encapsulated in the rst model will likely bootgi
model derived following tactile correction (Fig. 95 vs. 1, the learning of the second one.

T2 VS. ). Although these performance increases were noty) Effective Transfer of Joint Angle Domain Knowledge:
generally signi cant for the joint ranges, the time in forceThe range of motion averaged across each UR model is
closure and the contact error measures showed a signi Capbvided in Figure 10, and detailed values are given in

increase. This conrms our hypothesis that the additionghple I1. Here we note that the range values achieved fotigwi
contact of the teacher’s hands does in fact add noise to tae dgeyse are similar to those seen after demonstration plus one

and that a more accurate contact signature is gained throyghind of re nement (4 vs. B). When reusing the model
learner replay of the corrected hand postures. 4, given that no effort has yet been invested into model
learning, and that by contrast, the DRR modél has already

B. Model Reuse undergone demonstration plus one round of re nement, these
To look at the effect of reuse, comparisons will be madéata highlight the utility of model reuse as an effective nea

between the models’ learned for an objecA and reused for transferring domain knowledge and reducing the effort

on a novel objecB, the subsequently re ned models?#, involved in model development.

and the DDR models & learned for objecB, for multiple After re ning models %, the range of motion further

combinations of object& andB. expanded slightly (5 vs. ?A). In addition, the positive
The main motivation for model reuse comes from the fadifference in range of motion observed between the UR models

that two models, learned for two similar objects, may have &* and the DRR models ¥ was highly signi cant for the

lot in common. Therefore, rather than re-learning the grafipumb opposition jointg < 0:001), but less for the other joints

adaptation task from the beginning for each novel objediyithin and across tested objects). This result can prisari

model reuse takes advantage of the information that has bé&enexplained by the importance of this joint for producing a
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Range of motion for the following joints:

[pegl | Thumb opposition [Deg] Thumb finger [Deg] Index finger [Deg] Middle finger
1204 60+ 60~ 60+
80— 40 404 40
7 7 7 7 p-values:
404 20 20+ 20 ** n<0.001
* p<0.01
W W W W wWoowr W Wi W
ITI L1 I | I— Improvenent
2/3 1/3 1/3 0/3 by refining a reused paty
ITI (I |—¥| L Policy reue paradigm vs.
3/3 1/3 2/3 1/3 policy refinemert only
Time in force-closure Contact error Deg! Joint shakiness
eg/s]

| Model leaned from:

19 0.1 V\é 2" round of refineranton objet A
' (immedate reuse @ object B)

100%

80%- 104

* | refinementof the reusd moel W, @ object B

5 0.051 W | 15tround of refineranton object B
60%
O%L/\/\‘/;—/‘—/L 0 ol

W wE Wit W wWoowir W
= L L Improvenent
1/3 0/3 1/3 by refining a reused paty
L1 L1 1

Policy reus paradigm vs.
0/3 0/3 1/3 policy refinemert only

Fig. 10. Evaluation ofpolicy reuse Range of motion, time in force-closure, contact error andistess measures are given for each model considered
for evaluating the policy reuse paradigm. (Average valugesac3 repetitions of the experiments for all objects.) Bes@gh plot, stars indicate signi cant
improvements between training phases. Ratios reports the eunfitobjects that, taken separately, exhibited an sigmitdanprovement across each phases
(p < 0:05).

Small can object f Box object
1

larger variety of valid grasps within our experimental getu  |f4,
All together, these data support our hypothesis that model
reuse is an effective means of transferring domain knovededg ,,

2) Contact and Smoothness of Adaptatiofhe desirable
high values for the time in force-closure (Fig. 10) did difam
following immediate reuse. This can easily be explained by 4
the dissimilarity of the contact signature between the dif-
ferent objects, producing less appropriate predictiomalig
Nevertheless, performance then signi cantly improvedoasr o2
all objects following a round of re nement § vs. ?A,

p < 0:001), with nal values approaching those of the DRRFig. 11.  Two-dimensional contact signature for the small deft)(and
models across all objects ?A VS ?) box (right) objects. Shown for two dimensions ¥ ) of the contact signature

. . X for the thumb . Contours correspond to parts of the space with constant
The trend of effective domain knowledge transfer with reusgempership fu(nlc)tion valug( ; = pl)_ P P

was further underlined by the shakiness measure (Fig. 10),

which displayed similar values for the initial UR models and

DRR models following demonstration plus re nement)( vs. ~Section I1I-C2), we compared the performance of augmented
£). Importantly, this measure improved with re nement ornd non-augmented models, by using the models learned for

average for all models ¢ vs. $*). The immediate reuse of each object after two rounds of re nement. As the exper-

a model for another object having a different contact sigreat imental conditions of the previously described experiraent

produced less reliable contact information, and thus worg&l not produce a large proportion of missing contacts, the

control of the ngers. However, re ning the model on theeffect of augmenting the models did not result in a signitan

correct object overcame this effect. improvement. In order to justify this part of our approacte w
. o present here the results of another experiment, where \ve art
C. Grasp Execution: Reliability Measure cially corrupted the signal coming from a selected ngexrti

To look at the effect of augmenting the model by incorfo mimic the fact that, in the absence of contact, the touch
porating a prior on the reliability of the sensor signal (sesensors produce a default noisy response, we set the respons
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. . . . Thumb Index fi Middle fil
pi of the corrupted ngerj to follow a normal distribution - il e

O Q (g
N ( noiss nois9)» Where noise and noise COrrespond to the @ m @

Normal condition

mean and standard deviation measured on the response of the \ Jolelmele ommele,
real sensors of the iCub. 000 000 000

For each type of model (augmented and non-augmented), m m /l\
Ipe o mode) aug o trial ahe ) _ o (Co0® (CdE

we performed3 repetitions of an adaptation trial where the Corruption of one sensor (B85 ol (90 00| |0l
same nger was corrupted. These trials were run for each 000 Q00 000

possible nger, for a total oD trials per model type. We then
performed a three-way ANOVA on our experimental data in

order to separate the effects of object type, model type and - .
. k i [Deg/s odel leaned from:
which nger was corrupted. Our main results are summarized y _
. i 100% normal (2% round of refinerant,
in Figure 12. 0.15 mode! without reliability measue
We observed a signi cant increase of performance for thew avagentef2™ round o refinerant
time in force closure as the model was augmented with signal 01 augnentedmodel
reliability measuresp(< 0:001). This can be explained by the &/ B B B pp‘;a(;“s;l
random contact signature that is generated by the corruptéd e =g ° R e *p<0.01
ngertip. If it is not canceled out by assigning it a low (R (I Improvenentby augnenting
reliability, the information it conveys participates etiyao LT e B e

the selection of the grasp to which to adapt. Because of “E’f‘gt 12. Evaluation of the effect of augmenting the models witsignal
noise, the target grasp may vary importantly, and therefogaility measure (top) lliustration of the effect of corrupting the response
result in a less stable adaptation. Then, whereas the affecbf a selected ngertip: in this example, the middle nggbottom) Time
the object type was not signi cant, the effect of the coragpt in force-closure and shakiness measures are given for epehafy model
. (Average values across 3 repetitions of the experiments Ifavbgects and

nger was also important. The reason for that comes from thig: corruption of each nger separately). Below each ploasss indicate a
arrangement of the considered grasps: the thumb on one sidei cant difference between the performance of augmentecsus non-
and the two other ngers on the other side. As such, loosirfy9mented models.
the signal on the thumb results in a greater loss of sensory
information compared to the case where only the information . . ) o
provided by index or the middle ngertip was corrupted. ThesPresses on the ngertips, thus exploiting partial compsiim
results were corroborated by the shakiness measure. Ajthodhe robot hand. Through this programming by demonstration
this measure was in general higher than in conditions whéRethodology, we were able to teach a robot to perform the
sensors were not arti cially corrupted (see Fig. 9), augtedn @sk by providing it not only with an implicit knowledge
models compensated better for a loss in contpck (0:02). pf thg necessary kinematics for adaptation, but also with an
We also observed a higher variability in the response of nofiuitive notion of force. Our results conrmed successful
augmented models. Consequently, undesired nger movesne8fasp adaptation in response to changes in contact forpiaulti
were more likely to appear, hence yielding a higher shakine§bJects.
Finally, no signicant change in the range of motion was Our approach furthermore allows for the modi cation of
observed as an effect of augmenting the model. This waslearned model, within two contexts. The rst is te ne
expected since the range of joint angles value spanned in efite model to improve adaptation performance, by repeating
condition was the same. the correction-replay steps. The second iseiosea model in

In summary, despite the fact that the sensory feedbackBe development of new model, characterized by the contact
a nger was corrupted, the augmented models still manag(gignatures of a different object. In both cases the teacher

to make robust predictions that kept the grasp in forceuttns Provides tactile corrections as the learner executes with a
throughout the adaptation task. existing model of the task, thus exploiting the fact that

corrections are easier to provide when the learner is ajread
doing part of the job of actuation on its own, and building
upon domain knowledge already present within the robot
We have introduced a probabilistic approach for grasp adagystem. Both successful model reuse and improved adaptatio
tation, which learns a model to adapt hand posture solelgcbagvith additional rounds of model re nement have been shown.
on the sensor signature of the contact. A statistical modeiportantly, this iterative approach allowed us to progiesly
able to predict a target hand posture and contact magnitutiEjuce the complexity of teaching the robot to perform a task
given the current contact normal direction, is learned fmthat uses a large number of degrees of freedom.
dataset built over multiple steps under human supervidion. The probabilistic task model that we learn is formulated
particular, an initial hand posture is rstemonstratedo the to take advantage of the statistical data encoding in skvera
learner, then physicallyorrectedby a human teacher, andimportant contexts. The rst is to avoid over-generalinati
nally the resulting sequence of posturesriplayedby the within the input space, by handling unreliable contact atgre
learner as a form of self-demonstration. signals that might result from a missing contact between the
We contribute an empirical validation of our approach oaobject and one or more ngers, for example. The second
the iCub robot. To provide tactile corrections, the teachds to follow a perturbation only when the hand is in a

VI. DIscussiON ANDCONCLUSION
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posture that is near to what was seen within the demongirates well as arm posture adaptation would allow for incredging
dataset, and to otherwise counteract the perturbationvior facomplex responses to dynamic interactions with objects. Fo
of maintaining posture stability. In short, the demonsgbrat instance, our approach also assumes that the position bf eac
data thus is used not only to determine the reaction of theger on the object should remain roughly xed throughout
robot to environmental changes, but also to determine whadaptation. Extending our work to incorporate nger reposi
grasps are infeasible or input signals are poor, by exphpititioning techniques used for explicit object manipulatiooud
a probabilistic representation which captures the inhererertainly enhance the general applicability of our method.
variability in the data. A third advantage is to avoid the At a more technical level, a more advanced model of nger
need of a detailed model of the hand kinematics and objexttuation could be incorporated, for example that takesecab
geometry, by implicitly encapsulating this informatiortana friction into consideration. We expect that an improvediaet
model built from sensory data only. In contrast to modeldglastion model would have a signi cant impact on the success of
methods that require precise force sensing, actuation andha learned behavior, as the performance of a graspingrsyste
detailed environment model, which can be an impediment addpends heavily on the actuation controller. Similarlputth
impractical on many robotic platforms, our learning appioa the use of an impedance controller would require knowledge
was capable of extracting the non-linearities inherentuths of the dynamic parameters of the manipulator and very peecis
problems with a compact probabilistic model. force sensing capabilities, with such a controller our apph
Our approach thus contributes to the challenging areauld be applied on a larger variety of robots, especially on
of object interaction and manipulation within the contexthose that do not have the intrinsic mechanical slack that we
of dynamic environments, when contact with the object i®ok advantage of in order to provide corrections. A nalare
changing due to large perturbations. Some limitations & thof interest would be to combine our grasp adaptation approac
work include the following. The input space of our regreasiowith a model-based approach that can optimally plan arainiti
formulation is not suf ciently rich to disambiguate difient grasp and also recover from a loss of contact produced by too
hand postures that produce the same contact signature §teong a perturbation.
contact normal direction), and so a model must be learned
for each object individually. Also, the sensing capalahti ACKNOWLEDGMENT

of our robot platform have restricted our approach t0 the g research leading to these results has received funding
development ngertip manipulation paradigms only. A téeti from the Swiss National Science Foundation through the
sensor with greater coverage or ner resolution would allo‘NCRR in Robotics, and the European Community’s Seventh
for manipulations that engage the entire hand. Improving_ oo Programme FP7/2007-2013 - Challenge 2 - Cog-

this sensory capability would also allow our approach to t?ﬁtive Systems, Interaction, Robotics - under grant agesem
applicable on a larger set of objects. A tactile sensor wim, [231500]-[RbBOSKIN] ’

greater coverage and resolution also might provide aditio
object information useful for de ning an input space that
is suf ciently rich to disambiguate different hand postsire
that produce the same contact signature. To tackle thisrlatt
issue, enhancing our prediction method to select the baspgr
from a multi-modal distribution is a very interesting resda
guestion, that is left for future work.

Since our approach implicitly encapsulates the hand kine-
matics and object information, it is unlikely that a learned
model would generalize directly to the addition or removal o
one or more ngers. Nevertheless, models developed under ou
approach have been shown to be capable of handling the loss
of sensory feedback from a nger. We therefore expect that
one round of correction should be sufcient to learn, from
the reuse of an existing model, a new model for a smaller
number of ngers. If instead one or more ngers is added to
the effector, the prior knowledge of the existing model vebul
allow the teacher to focus on correcting the additional rgge
only.

There are many other promising directions in which to
continue this work. The rst is to integrate the adaptive
contact models with our prior work, that incorporated facti
corrections on the iCub arms, with the result of a complete
tactile teaching interface for learning full hand-arm npara-
tion behaviors interactively via demonstration. One alsghtn
reason about the dynamics of the contact signatures, as they
change over time. Integrating such information with thechan
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Range of motion: thumb opposition [deg]

Range of motion: thumb nger [deg]

Al B A B B A B B
: 2 1A 1 2 1A 1
big cal small can | 74:8 9:6 92:6 14:0 54:2 13:3 33:7 6:9 32:3 44 26:6 4:5
box big can 85:3 27:0 130:4 0:9 75:8 8:5 34:6 16:3 35:3 6:1 31:2 1.5
small cath  box 64:3 3:2 90:6 13:7 61:5 145 26:0 3:6 46:1 8:5 31:5 7:9
average value 74:8 18:7 104:5 21:5 63:8 15:3 31:5 11:1 37:9 8:9 29:8 5:8

Range of motion: index nger [deg]

Range of motion: middle nger [deg]

DETAILED RESULTS OF THE EVALUATION OF POLICY REUSEDATA ARE GIVEN FOR ALL REUSE COMBINATION TESTED OBJECTS DURG THE
DEVELOPMENT OF THEUR MODELS (AVERAGE VALUES ACROSS3 REPETITIONS OF EACH EXPERIMENY.

TABLE I

[46] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihoodofm
incomplete data via the EM algorithmJournal of the Royal Statistical
Society Series Bvol. 39, pp. 1-38, 1977.

A. Schmitz, M. Maggiali, M. Randazzo, L. Natale, and G. thde “A
prototype ngertip with high spatial resolution pressuensing for the
robot icub,” in Proceedings of IEEE-RAS International Conference on

[47]

(48]

Humanoid Robots2008.

B. Mishra, J. Schwartz, and M. Sharir, “On the existeand synthesis of
multi nger positive grips,”Algorithmica, Special issue: Robotjosl. 2,

pp. 541-558, 1987.

Al B A B B A B B
- 2 1:A 1 2 1:A 1
big cal small can | 32:0 4:5 29:1 2:6 23:8 0:6 36:2 6:4 34:0 2:9 26:6 5:2
box big can 37:9 8:7 37:8 11:3 29:4 5:0 36:6 19:4 42:6 12:0 29:0 3:9
small cah box 26:2 1:8 43:4 6:1 26:8 8:6 31:4 9:8 44:8 16:1 29:7 11:6
average value 32:1 7:5 36:7 9:6 26:7 6:2 34:7 13:3 40:5 12:6 28:4 7:8
Time in force-closure [%] Contact error [sensor unit]
Al B A B B A B B
] : 2 1A 1 2 1A 1
big cal  small can 70 9 93 6 9% 3 6:4 0:7 5:7 0:8 3:9 15
box big can 82 4 90 3 95 3 4:1 1:2 5:1 1:.0 5:2 1:5
small cah box 9% 4 94 2 95 1 4:1 1:4 4:1 1:0 4:7 2:2
average value 83 12 92 4 95 3 4:9 1:6 5:0 1:1 4:6 1:8
Shakiness [deg/s]
Al B 2 1A :
big cal smallcan | 0:09 0:04 0:08 0:04 0:07 0:05
box big can 0:09 0:05 0:07 0:03 0:07 0:04
small cah box 0:08 0:04 0:06 0:02 0:10 0:05
average value 0:09 0:04 0:07 0:03 0:08 0:05
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Range of motion: thumb opposition [deg] Range of motion: thumb nger [deg]

0 1 1 2 2 0 1 1 2 2
small can 8:7 2:1 33:6 4:2 54:2 13:3 68:0 32:8 94:9 8:1 9:0 1:3 24:2 2:3 26:6 4:5 23:6 8:3 35:1 2:7
big can 9:6 0:8 47:8 10:3 75:8 85 76:8 31:8 102:9 1.7 8:0 221 17:.0 49 31:2 15 43:4 4:8 42:3 7:0
box | 11:5 0:5 40:3 3:2 61:5 14:5 69:5 19:1 88:4 15:3 9:5 48 23:3 222 31:5 79 45:7 16:3 56:4 8:0
ruler 4:9 1:5 12:8 5:8 15:2 2:1 5:3 1:3 18:0 3:9 7:6 0:9 8:9 2:3 12:5 2:5 8:8 7:5 10:9 2:2

average value| 8:7 2:8 33:6 14:6 51:7 249 54:9 38:0 76:1 35:1 85 2:8 184 619 255 91 30:4 18:3 36:2 17:4

Range of motion: index nger [deg] Range of motion: middle nger [deg]

1 2 2 0 1
219 31 23:8 0:6 29:9 105 335 2: 10:5 1:.6  23:8

1 2
26:6 5:2 29:3 7:3 32:.0 6:5

small can 9:5 2:6 2:6 0:2
big can | 10:2 2:4 19:4 25 29:4 5:0 41:5 3:6 39:4 2:8 9:0 0:9 1914 69 29:0 3:9 42:9 4:1 44:6 4.7
box 13:2 2:2 17:9 7:4 26:8 8:6 41:9 10:2 52:1 25 9:4 4:7 22:8 4:9 29:7 11:6 46:9 14:1 56:0 5:5
ruler 6:9 1:4 10:2 4:9 11:1 0:9 10:4 4:4 12:1 1:6 12:0 0:3 9:3 2:6 23:3 1:8 10:4 6:6 22:2 2:5
average value| 9:9 3:1 17:3 6:6 22:8 8:6 30:9 15:0 34:3 14:7 10:2 2:8 18:8 7:3 27:1 7:2 32:4 16:8 38:7 13:7
Time in force-closure [%] Contact error [sensor unit]
0 "1 1 T2 2 0 "1 1 T2 2
small can 95 4 88 6 9% 3 91 4 95 2 5:3 2.0 12:2 8:2 3:9 1.5 15:1 8:4 3:6 1.0
big can 82 9 90 4 95 3 91 4 98 3 5:6 2:7 12:2 1:3 5:2 1:5 10:7 2:2 4:0 1:0
box 75 7 81 10 95 2 9 5 96 0 4:5 3:3 14:9 3:1 4:7 2:2 10:4 4:0 4:1 1:5
ruler 82 5 75 14 87 1 55 24 86 7 5:3 1:4 13:3 5:8 3:7 0:5 13:9 5:0 3:6 1.0
average value 83 10 84 11 94 4 82 20 94 6 5:2 225 13:2 54 4:4 1.7 12:6 5:8 3:8 1:2
Shakiness [deg/s]
0 "1 1 T2 2

smallcan| 0:06 0:03 0:10 0:05 0:07 0:05 0:06 0:03 0:06 0:03
big can | 0:09 0:05 0:07 0:03 0:07 0:04 0:09 0:06 0:08 0:05

box | 0:14 0:06 0:12 0:05 0:10 0:05 0:08 0:04 0:08 0:04

ruler | 0:09 0:04 0:09 0:05 0:10 0:06 0:12 0:07 0:06 0:05
average value| 0:10 0:05 0:10 0:05 0:09 0:05 0:09 0:06 0:07 0:04

TABLE |
DETAILED RESULTS OF THE EVALUATION OF POLICY REFINEMENT DATA ARE GIVEN FOR ALL TESTED OBJECTS DURING THE DEVELOPMENDF THEDRR MODELS (AVERAGE VALUES ACROSS3
REPETITIONS OF EACH EXPERIMENY.

LT



