A Dynamical System Based Approach for Controlling Robotic Manipulators During Non-contact/Contact Transitions

Seyed Sina Mirrazavi Salehian* and Aude Billard

Abstract—Many daily life tasks require precise control when making contact with surfaces. Ensuring a smooth transition from free motion to contact is crucial as incurring a large impact force may lead to an unstable contact with the robot bouncing on the surface, i.e., chattering. Stabilizing the forces at contact is not possible as the impact lasts less than a millisecond, leaving no time for the robot to react to the impact force. We present a strategy in which the robot adapts its dynamics before entering into contact. The speed is modulated so as to align with the surface. We leverage the properties of autonomous dynamical systems for immediate re-planning and handling unforeseen perturbations and exploit local modulations of the dynamics to control for the smooth transitions at contact. We show theoretically and empirically that by using the modulation framework, the robot can (I) stably touch the contact surface, even when the surface’s location is uncertain, (II) at a desired location, and finally (III) leave the surface or stop on the surface at a desired point.

I. INTRODUCTION

Establishing a stable contact with an environment is the first step toward accomplishing interactive tasks. A wide variety of many real-world manipulation tasks, such as milling/polishing/finishing workpieces [1], [2], wiping/painting surfaces [3], [4], peeling or dough rolling [5], include interactions between a tool and an environment. For such applications, the complete scenario can be categorized into three regions: (I) Moving in free motion space and approaching the contact surface; i.e. Free motion region. (II) Establishing the contact with the surface; i.e. Transition region. (III) Maintaining the contact with the surface while moving in the other directions; i.e. Contact region.; see Fig. 1

In this paper, we call a contact stable if the impact happens only once and the robot remains in contact with the surface after the impact.

Achieving a stable contact is particularly challenging as the contact leaves an infinitesimally short window of time for the robot to react properly to the impact force. It is however necessary to control for stable contact to avoid that the robot bouncing on the surface and damaging itself or the environment. Importantly, the complexity of the environment increases if the arm and the surface do not dissipate impact energy, i.e., perfectly elastic impact. In this case, in order to successfully establish a contact with a rigid surface, the robot should touch the surface with zero velocity so that the post-contact velocity taken along the line of impact is zero. Nevertheless, impacts in real-world scenarios are mainly inelastic, where, if the robot does not pass through the contact surface or the impact does not release energy, the relative post-contact velocity is a fraction of the relative pre-contact velocity [6]. In this case, touching the surface with near-to-zero velocity results in a zero post-contact velocity along the impact line, i.e., the robot remains in contact with the surface after the impact [7].

The complexity of achieving a stable contact has attracted attention in the last two decades. Early approaches addressed the stable contact problem with position/force hybrid control architectures. [8]–[11] proposed a hybrid control architecture in which a stable contact can be ultimately established after a finite number of bounces. On the same track, [7], [12] proposed three control laws for the three motion regions. Once the first impact has occurred, the controller at the transition region is activated which, asymptotically, reduces the normal velocity to zero. In [13], an integral force compensation with a velocity feedback controller is proposed for force tracking and rejecting the effect of impacts, where the force regulation is activated as soon as the force sensor detects the impact. Indirect force control architectures address the problem of switching between controllers [14]. [15] proposed a two layers controller which consists of an impedance and an admittance controllers. The parameters of the latter are calculated by solving a Linear Quadratic Regulator problem to minimize the force overshooting. In [16], [17],

*Corresponding author.
a hybrid impedance/admittance/time-delayed controller is proposed to absorb the impact force where the control input becomes zero if the contact force is not sensed. By artificially saturating the feedback sensors and modeling the contact surface via a passive mass-spring system, a controller for a 2-DOF planar robotic arm is proposed to limit the impact force in [18]. [19] shows that the classical PD feedback control law can be effectively used for mechanical systems subject to inequality constraints. By assuming the contact surface is a passive mass-spring system, [20] developed an adaptive control architecture to push the system to a desired state while the dynamics of neither the robot nor the environment are precisely known. The proposed controller in [21] guarantees stabilization of the manipulator on the contact surface after a finite number of bounces. By applying the concept of energy tanks, [4], [22] proposed tank-based approaches to ensure the stability of robotic systems driven by variable impedance controllers during non-contact/contact transitions. Even though in the mentioned works, it can be proved that the robot’s motion is stable and the contact is asymptotically/ultimately stable, there is no guarantee that the robot does not bounce on the surface after the first impact.

By approximating the contact surface with a passive spring system and dividing the state space into five regions, [23] uses the feedback force to propose piecewise affine controllers for each region such that a stable impact is achieved for linear one dimensional systems. However, in [23] the stable impact is achieved if the environment and the tool can be precisely modeled via a spring system and the bandwidth of the position and force sensors and the communication delays are infinite and zero, respectively.

In this paper, we exploit the properties of Dynamical Systems (DS) for immediate re-planning and their inherent robustness to real-time perturbations and propose an actively compliant control strategy. In [24] and later in [25] and [28], we propose dynamical systems to intercept a moving object with zero relative velocity by a single or a multi-arm system, respectively. Those proposed DSs are particularly tailored for the reaching and softly intercepting moving objects. In this work, as the transition is a local behavior, we propose a strategy consisting of locally modulating the robot’s motion in such a way that a stable contact can be established, even when the location of the contact surface is uncertain. The proposed architecture can be integrated into existing DS-based motion control approaches and modulates the robot’s motion in dynamic scenarios, where the robot must adapt to fast external perturbations. The idea of locally modulating dynamical systems is not novel and it has been previously used in [26] and [27] for modulating first order DSs. In this contribution, we use this idea to modulate the motion of a robot such that:

Objective 1: If the robot contacts the surface, the impact happens only once and the robot remains in contact after the impact.

Moreover, we show that the proposed controller is capable of modulating the robot’s motion such that:

\[Q = \begin{bmatrix} q_1 & \cdots & q_d \end{bmatrix} \]

where \(q_i \), \(i \in \{1, \ldots, d\} \) form an orthonormal basis in \(\mathbb{R}^d \)

1It is important to note that asymptotically stability of the nominal DS is only required to achieve Objective 1. To achieve the other objectives, Objective 2 and Objective 3, it is not necessary for the nominal DS to be stable.

2If \(M(x, \dot{x}) \) is the control input, this assumption is equivalent to the controllability of \(\dot{x} = M(x, \dot{x}) f(x, \dot{x}, t) \).
entries of Λ, where i is the row number and j is the column number. The motion direction, tangential and normal to the surface, can be controlled through the scalar values λ_{ij}, $\forall i,j \in \{1,\ldots,d\}$. As an example, by setting $\lambda_{ij}(x,\dot{x}) = 0 \ \forall j \in \{1,\ldots,d\}$, the acceleration of the robot normal to the surface will be zero; i.e., $q_i^T \ddot{x} = 0$. Moreover, by setting $\lambda_{ii}(x,\dot{x}) = 1$, $\lambda_{ij}(x,\dot{x}) = 0 \ \forall i,j \in \{1,\ldots,d\}$, $i \neq j$, the nominal DS drives the robot in the q_ith direction. We exploit this property and limit the influence of the modulation function to a region in a vicinity of the surface; denoted as the transition region. Given that we have at our disposal the function $\Gamma(x)$ to measure the distance to the surface, we set the transition region to be all points such that $0 < \Gamma(x) \leq \rho$, $\rho \in \mathbb{R}_{>0}$. Outside this region, to avoid undesirable modulations, the motion direction, tangential and normal to the surface, can be controlled through the scalar values λ_{ij}, $\forall i,j \in \{1,\ldots,d\}$, where $0 < \sigma$ defines the speed at which the modulation vanishes in the free motion region. ρ defines the region of the influence of the modulation function. If $\rho < \Gamma(x)$, the robot is far from the contact surface and $\Lambda = I_d \times I_d$, i.e., the robot is driven solely by the nominal dynamical system. In the following section, we show how by defining λ_{ij}, $\forall i,j \in \{1,\ldots,d\}$, a stable contact can be achieved. Moreover, we define ρ based on the kinematic constraints of the robot. First, we consider a perfect elastic impact between the robot and the contact surface; i.e., the Coefficient Of Restitution (COR) is one. Then, we extend this to a realistic scenario where the impact is inelastic, i.e., $0 \leq e < 1$.

III. COMPLIANT MODULATION FUNCTION

A. The elastic impact

Consider a scenario where the impact is perfectly elastic ($e = 1$). In this case, the normal velocities of the robot before and after the impact are equal in amplitudes but pointing to opposite directions. Hence, to achieve a stable contact [Objective 1], the normal velocity of the robot at the contact must be zero, i.e., $q_i^T \dot{x}(t^*) = 0$, where t^* is the time when the robot enters into the contact with the surface. **Theorem 1:** For a given initial state $\{x_0, \dot{x}_0 \in \mathbb{R}^d\}$, $0 < q_i^T \dot{x}_0 \leq \rho$, $f(x_0, \dot{x}_0) \neq 0$, the motion generated by (1) and (2) makes contact with the surface at x^* and satisfies [Objective 1], if $\forall j \in \{1,\ldots,d\}$

$$
\lambda_{ij}(x,\dot{x}) = \begin{cases}
\lambda_{ij}(x,\dot{x}) - 1 \ e^{-\frac{\rho-\Gamma(x)}{\sigma}} + 1 & \text{if } i = j \ \rho < \Gamma(x) \\
\lambda_{ij}(x,\dot{x}) e^{-\frac{\rho-\Gamma(x)}{\sigma}} & \text{if } i \neq j \ \rho < \Gamma(x)
\end{cases}
$$

(3) $\forall i,j \in \{1,\ldots,d\}$

where $f_j(x,\dot{x},t) = \frac{f(x,\dot{x})^T q_j}{f(x,\dot{x},t)^T f(x,\dot{x},t)}$ and

$$
\frac{|q_i^T \dot{x}_0|}{q_i^T \dot{x}_0} \leq \omega
$$

(5)

Moreover, the motion generated by (1) and (2) makes contact with the surface at x^* and satisfies [Objective 2] if $\forall (i,j) \in \{(2,1),(2,2),\ldots,(d,d)\}$

$$
\lambda_{ij}(x,\dot{x}) = \left(-2\omega q_i^T \dot{x} - \omega^2 q_i^T \dot{x} \dot{x}^T \right) f_j(x,\dot{x})
$$

(6)

Where $x^* = x^\prime$.

Proof: see Appendix A.

Theorem 1 provides a function to modulate the motion of the robot's end-effector such that stable contact can be established at the desired location. However, it is important to note that defining the pre-specified contact location is not necessary for implementing the proposed modulation framework. For instance, by defining

$$
\lambda_{ij}(x,\dot{x}) = \begin{cases}
0 & \text{if } i \neq j \\
1 & \text{if } i = j
\end{cases} \ \forall i \in \{2,\ldots,d\}, \ \forall j \in \{1,\ldots,d\}
$$

(7)

and $\lambda_{ij}(x,\dot{x})$, $\forall j \in \{1,\ldots,d\}$ by (4), the motion of the nominal DS is modulated only in the normal direction. Hence, if the robot enters the transition region, it stably makes contact with the surface as the normal velocity of the robot is modulated based on (4). However, the contact location emerges from the motion generated by the nominal DS.

If the robot starts its motion outside of the transition region, Eq. (3) states that the modulation function is activated once it enters the region. Hence, the initial state $(q_i^T x_0)$ in Theorem 1 is equivalent to ρ. However, Theorem 1 depends on the dynamics of the robot and is achievable only if the robot can decelerate sufficiently fast. Hence, the transition region must be set sufficiently large to meet the robot’s physical limits. This is summarized in the following proposition:

Proposition 1: For a robot with upper bounds \dot{x}_{max} and \ddot{x}_{max} on velocity and acceleration, respectively, given $q_i^T x_0 = \rho$, we set ρ and ω in (3) and (4), respectively, such that $\rho = \frac{3(q_i^T \dot{x}_{\text{max}})^2}{|q_i^T x_{\text{max}}|}$, $\omega = \frac{|q_i^T \ddot{x}_{\text{max}}|}{q_i^T \dot{x}_{\text{max}}}$. **Proof:** see Appendix B.

Once the robot is in contact with the surface, two interactive scenarios can be accomplished. In the first scenario, the robot slides on the surface and leaves it at the specific departure location (x^\prime); see Fig. 1A. In the second scenario, the robot slides on the surface till it reaches the desired stop location on the surfaces (x^\prime); see Fig. 1B. The former can be achieved by modulating the nominal dynamical system, x^* and the definition of $\Gamma(x)$. Whereas, the latter can be achieved by modulating only the nominal DS and x^*. These are summarized in the following propositions:

Proposition 2: For a given initial state $\{x_0, \dot{x}_0 \in \mathbb{R}^d\}$, $q_i^T x_0 \leq \rho$, $f(x_0, \dot{x}_0) \neq 0$, the motion generated by the nominal DS (1) modulated by (2), where
\(\lambda_{ij}(x, \dot{x}), \forall (i, j) \in \{(1,1), (1,2), \ldots, (d, d)\} \) are defined by [4] and [6], makes contact with the surface at \(x^e \) and then slides on the surface till it asymptotically reaches \(x^s \) (i.e. satisfaction of Objective 3(b)) if \(x^s \) in [6] is such that:

\[
 x^* = \begin{cases}
 x^e & \text{if } 0 < q_1^T x \\
 x^s & \text{if } q_1^T x = 0
\end{cases}
\]

Where, \(x^s \) is defined on the surface.

Proof: is omitted as it is similar to the one given in Appendix A.

Proposition 3: For a given initial state \(\{x_0, \dot{x}_0 \} \in \mathbb{R}^d \mid q_1^T x_0 \leq \rho, f(x_0, \dot{x}_0) \neq 0 \}, \) the motion generated by the nominal DS (1) modulated by (2), where \(\lambda_{ij}(x, \dot{x}), \forall (i, j) \in \{(1,1), (1,2), \ldots, (d, d)\} \) are defined by [4] and [6], makes contact with the surface at \(x^e \) \(\) and then leaves it at \(x^t \) (i.e. satisfaction of Objective 3(a)) if \(x^e \) and \(\Gamma(x) \) in [6] and [7], respectively, are defined as follows:

\[
 x^* = \begin{cases}
 x^e & \text{if } 0 < q_1^T x \\
 2x^t - x^e & \text{if } q_1^T x = 0
\end{cases}
\]

\[
 \Gamma(x) = q_1^T x + \left(\rho - (x^e - x^t)^T (x^e - x) \right) e^{-(x^t - x)^T \Sigma^{-1} (x^t - x)}
\]

Where, \(x^t \) is defined on the surface and \(\Sigma \in \mathbb{R}^{d \times d} \) is a positive definite matrix.

Proof: see Appendix C

As \(\delta \) is not a function of \(x^e \), changing \(x^e \) does not influence the motion of the robot in the normal direction to the surface. \(\Sigma \) defines the influence of \(\left(\rho - (x^e - x^t)^T (x^e - x) \right) e^{-(x^t - x)^T \Sigma^{-1} (x^t - x)} \) over \(q_1^T x \) in \(\Gamma(x) \).

If all entries in \(\Sigma \) are small, its influence will be small and vice-versa.

B. The Inelastic Impact

In an inelastic impact, due to internal friction, kinetic energy is dissipated and hence the coefficient of restitution is less than one, i.e., \(0 \leq e < 1 \). In this case, we can assume that if the normal velocity of the robot is very small \((-1 \leq \delta_\Perp \leq 1) \) on contact, the surface absorbs all the kinetic energy of the arm, i.e. the end-effector remains in contact after the impact\(^6\). Hence, to achieve Objective 1, the velocity of the robot must satisfy the following constraint at impact:

\[
 \delta_\Perp \leq q_1^T \dot{x}(t^*) \leq 0
\]

Theorem 2: Assuming the impact is inelastic. For a given initial state \(\{x_0, \dot{x}_0 \} \in \mathbb{R}^d \mid 0 < q_1^T x_0 \leq \rho, f(x_0, \dot{x}_0) \neq 0, \) the dynamical system (1) and (2) satisfies condition (11), if \(\lambda_{ij}(x, \dot{x}), \) then:

\[
 \begin{cases}
 \omega \left(-q_1^T \dot{x} + (\delta_\Perp + \nu) f_j(x, \dot{x}) \right) & q_1^T \dot{x} < \delta_\Perp \\
 \nu \left(\dot{\delta}_\Perp - \omega (1 - \frac{q_1^T \dot{x}}{\delta_\Perp}) q_1^T x \right) f_j(x, \dot{x}) & \delta_\Perp \leq q_1^T \dot{x} \leq 0 \\
 \omega \left(-2\nu T \dot{x} - \omega N^T x \right) f_j(x, \dot{x}) & 0 < q_1^T \dot{x} \leq \nu
\end{cases}
\]

As it is illustrated above, at \(x = (0.1 - 0.2)^T \),

\[
 \delta_\Perp \leq q_1^T \dot{x}_0 \leq \nu < \nu
\]

Proof: see Appendix D

\(\lambda_{ij}(x, \dot{x}) \) defined by [12] is continuous. The main advantages of the modulation function proposed for the inelastic impact over the elastic one is in its handling of uncertainties in the surface location.

Proposition 4: We assume a planar surface with equation \(q_1^T x = \eta \), whose orientation is precisely defined through its normal (N) but whose location \((\theta) \) is imprecise but bounded with a known upper bound \(\eta \), i.e., \(|\eta| \leq \eta < \rho \). Moreover, for a given initial state \(x_0, \dot{x}_0 \in \mathbb{R}^d \mid q_1^T x_0 < \delta,0 \leq \rho \leq q_1^T x_0 \leq \rho \), the dynamics of the robot is generated by the nominal DS (1) modulated by (2), where \(\lambda_{ij}(x, \dot{x}), \forall (j) \in \{1, 2, \ldots, d\} \) are defined by [12]. Then, the velocity of the robot when it impacts the surface is bounded and satisfies condition (11), if \(\nu \) and \(\omega \) are defined as follows:

\[
 \nu = -\delta_\Perp, \quad \omega = \frac{\delta_\Perp - q_1^T \dot{x}_0}{\eta - \eta}
\]

Proof: see Appendix E
TABLE I: The details of the systematic assessment. All the positions are with respect to the robot’s base. The units are defined in the metric system, \(\delta_l = -0.01 \text{ms}^{-1} \) and \(\rho = 0.2 \text{m} \). "Contact", "Leaving/Stopping" errors are the Euclidean distance between the real and the desired corresponding points. "Pre-contact" and "Pre-transition" velocities are the velocity of the end-effector in the normal direction when entering the contact and transition regions, respectively.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Initial position</th>
<th>Contact Error</th>
<th>Leaving/Stopping Error</th>
<th>Pre-contact velocity</th>
<th>Transit to Contact Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1</td>
<td>[-0.5,0,2, 0.0,0,0.9,8,1,0,1]</td>
<td>0.0±0.02</td>
<td>0.0±2.0×10^{-2}</td>
<td>0.0±2.4×10^{-2}</td>
<td>0.0±0.58</td>
</tr>
<tr>
<td>Scenario 2</td>
<td>[-0.5,0,1, 0.0,0,0.9,8,1,0,1]</td>
<td>0.0±0.02</td>
<td>0.0±2.0×10^{-2}</td>
<td>0.0±2.4×10^{-2}</td>
<td>0.0±0.58</td>
</tr>
</tbody>
</table>

The performance of the proposed framework is illustrated by a simple intuitive 2-D example in Fig.2 where, in Fig.2a by using the proposed framework, the robot can stably transit to the contact region. Fig.2b illustrates an unstable contact where the modulation function is disabled by setting \(\delta_l = 0.01 \text{ms}^{-1} \). This results in an inaccurate estimation of the contact surface. In this experiment, we assumed that the contact surface is a plane. However, the fender’s surface is bumpy. This results in inaccuracies in the measurement of the distance between the robot and the real surface. ii) The second cause of error is the approximations in the desired motion of the robot. In spite of these, the overall performance of the task execution is satisfying and the robot was able to wipe the surface successfully in all the trials.

IV. EMPIRICAL VALIDATION

We consider a task of wiping a surface. The performance of the proposed framework is evaluated on a real robotic arm platform, i.e., 7 DOF robotic arm (KUKA IWA). The robot is controlled at the level of joint positions at a rate of 200 Hz. The output of the DS is converted into the desired motion of the robot. In spite of these, the overall performance of the task execution is satisfying and the robot was able to wipe the surface successfully in all the trials.

1) Systematic assessment: Two experimental set-ups are designed to assess the performance of the system. In the first one, the surface is planar and both surface and the tool are metallic and rigid. In the second one, the surface is a metallic fender and the tool is made from plastic. Both scenarios were repeated 30 times for each set-up where the initial state of the robot is randomly chosen; all the information is summarized in Tab.I. The location of the surface is fixed. The snapshots of the motion execution in both experimental-sets are shown in Fig.3 and Fig.4. Visual inspection of video and the measured force profiles confirms that, in all the trials, the robot stably makes contact with the surface and accomplishes the tasks. However, the inspection of the measured velocity profiles indicates that in three cases the velocity at impact is higher than 0.01\text{ms}^{-1}. An example of the motion of the robot is illustrated in Fig.5. As can be seen, the normal velocity of the robot is reduced to \(\delta_l \) in the transition region to ensure a stable contact.

As reported in Table I, the overall position errors at \(x^1 \) and \(x^2 \) are very small and they can be considered to be negligible in the wiping scenario. This indicates that even though the surface is not exactly planar in our implementation, our modulation function is capable of accomplishing the desired tasks. These inaccuracies can be attributed to three different causes. i) The main cause of this error is the approximation of the contact surface. In this experiment, we assumed that the contact surface is a plane. However, the fender’s surface is bumpy. This results in inaccuracies in the measurement of the distance between the robot and the real surface. ii) The second cause of error is the inverse kinematic [approximation] algorithm. Although, the motion of the robot is not super fast, the IK solver is still unable to generate a very accurate joint-level motion corresponding to the desired end-effector trajectory. The kinematic constraints of the robot are the main reasons for this shortcoming. iii) The third cause of the error is delays in measuring the joint positions and the communication channels. As the robot runs closed-loop, any measuring delays cause inaccuracies in specifying the desired motion of the robot. In spite of these, the overall performance of the task execution is satisfying and the robot was able to wipe the surface successfully in all the trials.

2) Modulation under perturbations: The second assessment is designed to illustrate the capability of the modulation framework in performing Scenario 1 (Fig.1a) under perturbations. While the robot is moving from the initial location, a human operator perturbs either the robot or the surface. Perturbations on the robot are applied to its end effector. Due to the closed-loop implementation of (1), the robot does not stiffly stick to its current state. Hence, one can grab the robot’s end-effector and move it around (Fig.6). As it can be seen in the accompanying video, when the robot is perturbed, the modulation function modifies the motion of the robot such that \textbf{Objective 1}, \textbf{Objective 2} and \textbf{Objective 3}a are achieved. We then assess the performance of the controller in a dynamically changing environment. Once the robot started moving, the operator changes the fender’s position as well as its orientation (Fig.5). Due to the fact that the modulation function is inherently a linear system, it is computationally efficient. Hence, it can instantaneously modify the robot’s motion wrt. the current state of the surface.

3) Modulation under uncertainties: In the final experiment, we assess the performance of the controller in an
uncertain environment while performing Scenario 1 (Fig.1a). Uncertainties are modeled as random noise on the location of the surface, where $\eta = 0.15m$. As $\delta_x = -0.01ms^{-1}$ and $q^T_1 x_0 = \rho = 0.2$ and $q^T_1 \lambda_{\text{max}} = -0.4ms^{-1}$, and based on (16), $\psi = 0.1$ and $\omega = 78$. The experiment was repeated 30 times; see the accompanying video and Table II. In all 30 trials, the impacts were stable. However, as expected, the robot does not exactly make contact with the surface at x^c. Moreover, as a force/tactile sensor was not used, the robot has no way to recognize that a contact occurred. Hence, in 28 out of 30 cases, the robot does not slide on the surface, after the contact, to reach x^c. In the other two cases, η was approximately 0.

V. SUMMARY AND DISCUSSION

In this paper, we propose a controller for locally modulating a motion of the robot during non-contact/contact transitions. Using/employing this approach, the robot reduces its velocity to a certain threshold before entering into contact with the surface such that the post-contact velocity becomes zero; i.e. the impact is stable and the robot does not bounce on the surface. Furthermore, by modulating the motion of the robot in the tangential directions, we showed that the contact location can be specified. Moreover, while the robot slides on the surface, it can either leave or stop on the surface at the desired departure or stop points, respectively. Throughout the proofs, we assume that x^c is a fixed target. However, in two cases it is not constant. In the first case, x^c is changed wrt. the state of the robot in Proposition 2 and 3. This does not actually affect the performance of the system for two reasons as changing x^c based on (8) or (9) does not affect the motion of the robot in the normal direction. Hence, the switch between $0 < N^T x$ and $N^T x = 0$ happens only once. In the second case, x^c changes while the surface is

TABLE II: The details of the systematic assessment of the controller in an uncertain environment. As $\eta = 0.15$ and $\rho = 0.20$, the effective transition region is 5cm. Although, the arm does not contact the surface at x^c, the contact is stable and, hence, the robot slides on the surface till it reaches x^c. The contact error is almost constant for $\eta < 0.1$ and it exponentially increases for $0.1 \leq \eta$.

| Scenario 1 |
| --- | --- |
| Initial position | $[-0.5 \pm 0.1, -0.1 \pm 0.3, 0.8 \pm 0.2]$ |
| Contact error | 0.06 ± 0.04 |
| Pre-contact velocity | 0.006 ± 0.005 |
| Pre-transition velocity | 0.13 ± 0.013 |
perturbed. In this case, as the modulation function is very fast to compute and its convergence rate is faster than the update rate, it can properly react, in real-time, to the perturbations as presented in Section IV-2.

In Section IV, the modulated DS is implemented in closed-loop as the low-level controller of IIWAs fully compensates for the robot’s dynamics and it is safe to assume that the measured position is equal to the commanded position. However, this assumption might not be true in other robotic platforms. In these cases, in order to ensure the stability of contact, one needs to study the behavior of the modulated-DS while considering the robot’s controller and dynamics.

As the sole information about the surface is its location, any inaccuracies in the position measurements deteriorate the performance of the controller. To address this, we present Proposition 4 to improve the robustness of the system in face of uncertainties in the location of the surface. This, however, fails in identifying the true location of the surface once the robot makes contact with the surface. By integrating our modulation framework and force control architectures, one can use the force-feedback information not only for identifying the true location of the surface, but also for controlling the contact force while the robot is on the surface.

Even though, the performance of the system is successfully evaluated on a bumpy surface, in this paper, the contact controlling the contact force while the robot is on the surface. This, Proposition 4 to improve the robustness of the system in face of uncertainties in the location of the surface. This, however, fails in identifying the true location of the surface once the robot makes contact with the surface. By integrating our modulation framework and force control architectures, one can use the force-feedback information not only for identifying the true location of the surface, but also for controlling the contact force while the robot is on the surface.

Even though, the performance of the system is successfully evaluated on a bumpy surface, in this paper, the contact controlling the contact force while the robot is on the surface. This, Proposition 4 to improve the robustness of the system in face of uncertainties in the location of the surface. This, however, fails in identifying the true location of the surface once the robot makes contact with the surface. By integrating our modulation framework and force control architectures, one can use the force-feedback information not only for identifying the true location of the surface, but also for controlling the contact force while the robot is on the surface.

ACKNOWLEDGEMENTS

This work was supported by the EU project Cogimon H2020 ICT 23 2014. Authors thank Nadia Figueroa, Yonadav Shavit and Andrew Sutcliffe for their help.

APPENDIX

A. Proof of Theorem 7

By definition, Q is an orthonormal matrix; i.e. $Q^T Q = I$, $Q^T = Q^{-1}$. Moreover, as q_i, $\forall i \in \{1, \ldots, d\}$ form an orthonormal basis in \mathbb{R}^d, $w = \sum_i q_i q_i^T w$. Substituting [3] and [4] into [1] and multiplying both sides of the resultant equation by q_i^T yields:

$$\dot{q}_i^T = q_i^T \frac{e^{-\omega t}}{\omega} (q_i x_0 + q_i^T x_0 t)$$

Based on (6), as $\frac{\dot{q}_i x_0}{\dot{q}_i^T x_0} \leq \omega$ and $0 < q_i^T x_0, 0 < q_i^T x_0 t + q_i^T x_0$. Hence, (15) is zero only when t tends to infinity; i.e. $\lim_{t \to \infty} q_i^T x = 0$. Moreover, the time derivative of (15) at $t = \infty$ is zero; i.e. $\lim_{t \to \infty} \dot{q}_i^T x = 0$. Hence, the motion generated by (15) and (16) with respect to (3) and (5), enters the contact surface with zero normal velocity. Hence, Objective 1 is satisfied.

In the second region, Objective 2 is satisfied.
\[
q(t) = (q_1(t) - \delta_v) e^{-\omega t} + \delta_v + \nu
\]

Both (25a) and (25b) are monotonic functions; i.e., if \(0 < q_1(t) < \delta_v\), (25a) is monotonically decreasing and (25b) is monotonically increasing. Hence, based on (25a) and (25b) and \(r^T x(t) + \delta_v \leq 0\) at \(t = 0\), we can conclude that (25a) and (25b) are satisfied.

By defining \(0 < \delta_v < \delta_q\), the robot moves toward the contact surface with \(\delta_q \leq q_1(t)\). This, based on (29), results in an absolute performance. To conclude, by defining \(\eta \in [\bar{\eta}, \overline{\eta}]\), based on (31), the robot’s velocity at the contact is \(\delta_v \leq q_1(t)\); i.e., (11) is satisfied.

E. Proof of Proposition 4

To satisfy (12) when the location of the surface is uncertain, we need to study the worst scenario, namely when \(\eta \in [\bar{\eta}, \overline{\eta}]\). To this end, we should consider the robot’s normal velocity to be \(\bar{\eta} \in [\bar{\eta}, \overline{\eta}]\), which results in an absolute performance. To conclude, by defining \(\eta \in [\bar{\eta}, \overline{\eta}]\), based on (31), the robot’s velocity at the contact is \(\delta_v \leq q_1(t)\); i.e., (11) is satisfied.

REFERENCES

