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Abstract

This overview presents computational algorithms for generating 3D object
grasps with autonomous multi-fingered robotic hands. Robotic grasping has
been an active research subject for decades, and a great deal of effort has been
spent on grasp synthesis algorithms. Existing papers focus on reviewing the
mechanics of grasping and the finger-object contact interactions [7] or robot
hand design and their control [1]. Robot grasp synthesis algorithms have
been reviewed in [63], but since then an important progress has been made
toward applying learning techniques to the grasping problem. This overview
focuses on analytical as well as empirical grasp synthesis approaches.
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1. Introduction

Over the past decades, research in robotic grasping has flourished. Sev-
eral algorithms have been developed for synthesizing robotic grasps in order
to achieve stability, force-closure, task compatibility and other properties.
Different approaches have been developed to meet these goals, and substan-
tial improvements have been claimed. Thus, the availability of large number
of algorithms for our purpose has made it difficult to choose, since their ap-
proaches and assumptions are different. The primary goal of this overview is
to make the task of choosing algorithms easier by providing a comparative
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view of them.

During a task execution, the grasping fingers must be controlled so that the
grasp processes dexterity, equilibrium, stability and dynamic behavior. Such
a control scheme, requires methods of computing the finger parameters (po-
sitions and forces of fingertips and joints). These algorithms are referred to
as robotic grasp synthesis algorithms.

This paper is organized as follows. Section 2 introduces the terminology used
and basics on grasp analysis. Section 3 and 4 review algorithms based re-
spectively on analytical and empirical approaches. By analytical approaches,
we mean those based on geometric, kinematic and/or dynamic formulations
of grasp synthesis problems. The empirical approaches avoid the computa-
tion of the mathematical and physical models by miming or imitating human
grasping strategies.

2. Background and terminology

The basic function of a gripper is to grasp objects and possibly manipu-
late them by means of its fingers. One of the essential properties looked for in
the grasp configuration selection is the immobilization of the grasped object
(its equilibrium) against the possible external disturbance. The set of fingers
grasping the object by the fingertips can also be seen, from a mechanical
point of view, as distributed impedances on the object surface [67].

There is a wide disparity in the terminology used in the grasping litera-
ture regarding equilibrium, stability, force closure and form closure terms
[6, 42, 31, 47, 50, 68]. We adopt the terminology used in [31] and summarize
in the following the corresponding definitions.

Consider an object grasped at N contact points. At each contact location,
the object is subject to normal/tangential forces and torsional moment about
the normal. We denote these wrenches by win, wit and wiθ respectively, and
their corresponding magnitude by cin, cit and ciθ. Each contact may be either
frictionless, frictional or soft. In the case of a frictional contact, there are only
normal and tangential wrenches. For a frictionless contact only the normal
wrench is considered. The wrench matrix W is composed of the mentioned
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vector wrenches arranged in columns. We denote c the corresponding wrench
magnitude vector.

Definition 1. A grasped object with an external wrench g is in equilibrium
if and only if:

1. ∀i, cin ≥ 0, | cit |≤ µitc
i
n and | ciθ |≤ µiθc

i
n

2. Wc + g = 0 for c 6= 0

Where µit and µiθ correspond respectively to the coefficients of the tangential
and torsional friction for each contact location given by Coulomb’s law.

So, a grasped object is defined to be in equilibrium if the sum of all forces
and the sum of all moments acting on it are equal to zero. An equilibrium
grasp may be stable or unstable. The stability was detailed in [68] as follows:

Definition 2. A grasped object at equilibrium, in which all forces and mo-
ments can be derived from a potential function V (q) is stable if ∀∆q 6= 0,
∆V > 0.

The first goal of every grasping strategy is to ensure stability. The
Lejeune-Dirichlet’s theorem gives a sufficient condition for stability analy-
sis of a conservative system including external dissipative forces by using a
direct method. General methods rely on the linearized forms of the motion
system equations. These equations can be linearized around an equilibrium
position in order to analyze its static stability. There is a certain A matrix
whose eigenvalues characterize the behavior of the nearby points (Hartman-
Grobman theorem). More precisely, if all eigenvalues are negative real num-
bers or complex numbers with negative real parts then the point is a stable
attracting fixed point, and the nearby points converge to it at an exponential
rate [29]. In addition, the local geometry of the contact could be taken into
account in the grasp stability analysis [31].

Another dimension in the stability of the grasp relies on the limitations
in the contact force transmissions. They are reflected by properties such
as form-closure, force-closure and more generally by the ”contact stabil-
ity” [6, 42, 31, 47, 50, 68].
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Moreover, a grasp is stable if a small disturbance, on the object position or
finger force, generates a restoring wrench that tends to bring the system back
to its original configuration [31, 12]. Nguyen in [49] introduces an algorithm
for constructing stable grasps. He also proves that all 3D force-closure grasps
can be made stable. A grasp is force-closure when the fingers can apply ap-
propriate forces on the object to produce wrenches in any direction [60]. In
other words, the wrench or grasp matrix, noted W, should positively span
the entire 6-dimensional wrench space.

In addition, force closed grasps are a subset of equilibrium grasps, and have
the important property of being stable. However, not all stable grasps are
force closed, including many common and easily obtainable grasps. Bic-
chi [7] observed that force closure grasp analysis is equivalent to the stability
of an ordinary differential equation. Force closure property is defined as
follows [31]:

Definition 3. A grasp verify the force closure property if and only if, for any
external wrench ŵ, there exists a magnitude vector λ satisfying the con-
straint equalities in Definition 1, such that Wλ = ŵ.

Finally, form closure property is usually a stronger condition than force clo-
sure. The analysis of form closure is intrinsically geometric. More formally,
a grasp achieves form closure if and only if it achieves force closure with
frictionless point contacts. In this case, form closure and force closure are
dual to each other [50, 71].

Obviously, stability is a necessary but not a sufficient condition for a
grasping strategy. When we reach out to grasp an object, we have a task to
accomplish. Thus, in order to successfully perform the task, the grasp should
also be compatible with the task requirements. Computing task-oriented
grasps is consequently crucial for a grasping strategy. Finally, because of the
variety of object shapes and sizes, a grasping strategy should be prepared to
grasp objects the robot sees for the first time.

Thus, a grasping strategy, as shown in figure 1, should ensure stability, task
compatibility and adaptability to novel objects. By novel objects, we refer
to ones that are being seen for the first time by the robotic system. Fur-
thermore, a grasp synthesis strategy should have an answer to the following
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Figure 1: Grasp strategy should satisfy three constraints: stability, task compatibility and
adaptability to new objects.

question: where to grasp an object in order to accomplish a task? Analytical
and empirical approaches answer this question differently.

Analytical approaches determine the contact locations on the object and
the hand configuration that satisfy task requirements through kinematic and
dynamic formulations. Empirical approaches, on the other hand, mimic hu-
man grasping to select a grasp that best conforms to task requirements and
the target object geometry. In the following, we review these two approaches
applied to 3D object grasp synthesis. The reader should notice that many
algorithms have been developed for 2D object grasp planning [40, 55], but
3D object grasp synthesis still an active research area due to the high dimen-
sional grasp space and object complex geometry.

3. Analytical Approaches

Analytical approaches consider kinematics and dynamics formulations in
determining grasps. The complexity of this computation arises from the
number of conditions that must be satisfied for a successful grasp. Figure 2
illustrates the general strategy adopted by analytical approaches to compute
grasps. Proposed algorithms in the literature do not necessarily contain all
the components of the architecture presented in Figure 2. Most of them do
not take into account the task constraints and/or the hand model.
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Figure 2: Strategy of grasp synthesis using analytical approaches.

The diagram of figure 3 summarizes these strategies. A quick look at
this diagram shows that many works have been developed to compute force-
closure grasps but only few have addressed the problem of computing task
oriented ones. This shows the difficulty of the latter. In the following, we
present and discuss some relevant works for generating force-closure and task-
oriented grasps.

3.1. Force-Closure Grasps

The works in this section present techniques for finding force-closure
grasps for 3D objects. For this purpose, two approaches may be considered:
(1) analyzing whether a grasp is force-closure or not; or (2) finding fingertips
locations such that the grasp is force-closure. The former considers force-
closure necessary and sufficient conditions. The latter is the force-closure
grasp synthesis problem, and it is the one considered here since this survey
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Figure 3: A synthetic view of existing analytical approaches for grasp synthesis of 3D
objects. The diagram shows analytical strategies developed for satisfying force closure
and task oriented conditions.

discusses grasp synthesis. Given the quantity of relevant works in this field,
we divide them into the following groups: (1) force-closure grasp synthesis
for 3D objects and (2) optimal force-closure grasp synthesis according to a
quality criterion.

3.1.1. Force-Closure Grasp Synthesis for 3D Objects

Depending on the object model, polyhedral or complex, different grasp
synthesis strategies have been proposed in the literature. We present first
those dealing with polyhedral objects. These objects are composed of a fi-
nite number of flat faces. Evidently, each face has a constant normal and the
position of a point on a face can be parameterized linearly by two variables.
Based on these properties, grasp synthesis approaches dealing with polyhe-
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dral objects reduce the force-closure condition to a test of the angles between
the face normals [49], or use the linear model to derive analytical formula-
tion for grasp characterization [54, 39, 17]. Based on the property that each
point on a plane face can be parameterized linearly with two parameters,
Ponce et al. [54, 56] formulated necessary linear conditions for three and
four-finger force-closure grasps and implemented them as a set of linear in-
equalities in the contact positions. Finding all force-closure grasps is thus set
as a problem of projecting a polytope onto a linear subspace. Liu et al. [39]
discussed the force-closure grasp synthesis problem for n fingers when n− 1
fingers have fixed positions and the grasp with the n− 1 fingers is not force-
closure. Using the linear parametrization of a point on an object face, they
search locations on that face for the nth finger that ensure force-closure.
Ding et al. [17] presented an algorithm to compute the positions for n fingers
to form a force-closure grasp from an initial random grasp. The algorithm
first arbitrarily chooses a grasp on a given face of the polyhedral object. If
the selected grasp is not form-closure or in other words if the origin O of the
wrench space lies outside the primitives wrenches convex hull, the algorithm
moves each fingertip position, using this linear parametrization of a point on
an object face, at a fixed step on its corresponding face so that the convex
hull moves towards the origin O and consequently, the form-closure property
is ensured.

The previous analyses were limited to polyhedral objects such as boxes.
These approaches do not consider the issue of selecting a grasping facet. An
exhaustive search is performed instead. They are efficient when the number
of faces of the object is low. However, commonly used objects like mugs
or bottles are not necessarily polyhedral and can rarely be modeled with a
limited number of faces. Hence, when polyhedral grasp synthesis approaches
are applied to these objects, they need a huge computation effort to study
the combinations of their large number of constituting faces. Thus, new
techniques are required for force-closure grasp synthesis. Such general ap-
proaches place no restrictions on the object model [37, 18]. Objects are
modeled with a cloud of 3D points or a triangular mesh. The authors in
[37] presented an algorithm for computing three finger force-closure grasp
for 2D and 3D objects. They assume hard-finger contacts. Based on the
intersection of the corresponding three friction cones, the authors compute
three-finger force-closure grasp of 2D objects based on geometrical analysis.
They simplify then the 3D object force-closure problem to a 2D one when the

8



three contact points constitute a plane and when this plane intersects each
friction cone on a triangular area. Ding et al. [18] proposed an algorithm
to synthesize force-closure grasps with 7 frictionless contacts. The grasped
object is discretized so a large cloud of points pi as well as their normals
ni is available. Then, a large collection of contact wrenches gi can be ob-
tained. The algorithm starts with an initial set of seven contacts randomly
chosen among the set of points. If the selected grasp is force-closure, the
algorithm finishes. Otherwise, the initial contacts are iteratively exchanged
with other candidate locations until a force-closure grasp is obtained. The
previous heuristic algorithm is extended in [41] for any number of contacts
with or without friction. The authors in [23] demonstrate that wrenches as-
sociated to any three non-aligned contact points of 3D objects form a basis
of their corresponding wrench space. This result permits the formulation of a
new sufficient force-closure test. Their approach works with general objects,
modeled with a set of points, and with any number n of contacts (n ≥ 4).

Such methods find contact points on a 3D object surface that ensure
force-closure. Although this criterion guarantees the stability of the grasp,
it does not include any notion about the quality of the grasp generated, for
example how the latter deals with the limitation of the forces that can be
applied by the fingers on the object. Several quality criteria were introduced
to the grasping literature and in the following some relevant works on com-
puting optimal grasps are presented.

3.1.2. Optimal Force-Closure Grasps on 3D Objects

Given two grasps G1 and G2 described by different wrench systems, we
would frequently like to be able to say how good G1 is as compared to G2. Ob-
viously, such measure of goodness must possess some physical intuitions that
correspond to how we normally view a grasp. Mishra summarizes in [46] var-
ious existing grasp metrics with extensive discussion on the trade-offs among
the goodness of a grasp, the number of fingers, the geometry of the object,
and the complexity of the grasp synthesis algorithm. A rich survey of grasp
quality measures can also be found in [65].

Mostly, optimal force-closure grasp synthesis concerns determining the
contact points locations so that the grasp achieves the most desirable per-
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formance in resisting external wrench loads. These approaches could be seen
as heuristic optimization techniques. They compute optimal force-closure
grasps by optimizing an objective function according to a pre-defined grasp
quality criterion. When objects are modeled with a set of vertices, they search
all their combinations to find the optimal grasp. For example, Mirtich and
Canny [45] developed two optimality criteria and used them to derive op-
timum two and three finger grasps of 2D objects and optimum three finger
grasps of 3D polyhedral objects. Whether the first or the second criterion
is used, the maximum circumscribing or the maximum inscribing equilateral
triangle defines the optimum grasp of a 3D object. The optimum grasp points
must be vertices of the polyhedron. Thus, the authors test all triples of ver-
tices of a n-vertices polyhedron in order to find its corresponding optimum
three fingers grasp. This corresponds obviously to an O(n3) algorithm. On
the other hand, when objects are smooth, such as ellipsoids, the primitive
wrenches of the grasp are also smooth functions of the grasp configuration.
If the grasp configuration that specifies the positions of the contact points
is denoted by u, f(u) in [72] is a function that provides a measure on how
far the grasp is from losing the closure property. Thus, a natural way to
compute the force-closure grasp is to minimize f(u). The optimization prob-
lem can be solved by descent search. Zhu and Wang [71] proposed a similar
algorithm based on the gradient descent minimization of the derivative of the
Q distance or Q norm. The Q distance is the minimum scale factor required
for a convex set to contain a given point a, i.e. it quantifies the maximum
wrench that can be resisted in a predefined set of directions given by the
corresponding convex set.

Searching the grasp solution space for an optimal grasp is a complex prob-
lem requiring a large amount of computing time. Fast algorithms are required
to integrate grasp planners in on-line planning systems for robots. Hence,
heuristic approaches were applied to the grasp synthesis problem. These
approaches generate first many grasp candidates randomly [10], according
to a predefined procedure [27] or by defining a set of rules to generate a
set of grasp starting positions and pre-grasp shapes that can then be tested
on the object model [43, 44], filter them with a simple heuristic to exclude
candidates which can not lead to feasible grasps or that does not satisfy the
force-closure condition and then choose the best candidate according to a
quality criterion. However, such approaches suffer from the local minima
problem.
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All these approaches have studied stable grasps and developed various
stability criteria to find optimal grasps. After examining a variety of human
grasps, the authors in [15] conclude that the choice of a grasp was dictated
by the tasks to be performed with the object. Thus, finding a ”good” stable
grasp of an object is only a necessary but not sufficient condition. Therefore,
many researchers addressed the problem of computing task-oriented grasps
which will be addressed in the next paragraph.

3.2. Task Compatibility

A good grasp should be task oriented. Few grasping works take the task
into account. This is due to the difficulties of modeling a task and providing
criteria to compare the suitability of different grasps to the task requirements.

Manipulability ellipsoids are effective tools to perform task space analysis
of robotic manipulators, in terms of their ability to perform velocities and
acceleration at the end effector or to exert forces on the environment. This
may be advantageous to find the best configuration to execute a given task.
Shortly, a unit sphere in the joint space can be mapped into a manipula-
bility ellipsoid in the task space by Jacobian transformation. Velocity and
force manipulability ellipsoids show feasible motions and achievable forces
in the task space, respectively. Yoshikawa [70] gave one of the first math-
ematical measures for the manipulability of any serial robot by discussing
the manipulating ability of robotic mechanisms in positioning and orienting
end-effectors.

Chiu [14] proposed a task compatibility index to measure the level of
agreement between the optimal directions of the manipulator and the actual
moving directions required by the given task. The task compatibility index is
considered for both force and velocity transmissions. Despite of their popu-
larity, ellipsoids suffer from possible inconsistency deriving from improper use
of Euclidean metric and from dependency on change of scale and coordinate
frame [19]. To overcome these problems, the task-space polytopes which
accurately represent the maximum achievable task space capabilities with
given limits in the joint space were introduced in [25]. Furthermore, Lee [35]
discussed the use of manipulability ellipsoids and polytopes in measuring the
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dexterousness of robot manipulators. He illustrated that the manipulabil-
ity ellipsoid does not transform the exact joint velocity constraints into task
space and so may fail to give exact dexterousness measure and optimal direc-
tion of motion in task space. He also proposed a practical polytope method
which can be applied to general 6D task space.

Li and Sastry [36] developed a grasp quality measure related to the task
to be performed. They showed that the choice of a task oriented grasp should
be based on the capability of the grasp to generate wrenches that are rele-
vant to the task. Assuming a knowledge of the task to be executed and of
the workpiece geometry, they planned a trajectory of the object before the
grasping action in order to model the task by a six-dimensional ellipsoid in
the object wrench space. The latter is then fitted to the grasp wrench space.
The problem with this approach is how to model the task ellipsoid for a given
task, which the authors state to be quite complicated.

Pollard [53] designed a system that found grasps having a certain percent-
age of the quality of a given prototype grasp. A grasp prototype is defined
as an example object and a high quality grasp of that object. A task is
characterized as the space of wrenches that must be applied to the object
by the robot in order to complete the task objective. If one knows nothing
about the grasping task and assuming that the probability for every wrench
direction to occur as a disturbance is equal, the task wrench space, TWS, is
modeled as a unit sphere. The grasp quality measure used is the amount the
robot has to squeeze the object in order to be capable of resisting all task
wrenches while maintaining the grasp. By accepting the reduced quality,
the contact points of the prototype grasp can be grown into contact regions.
Pollard’s system can be considered one of the more general grasp synthesis
tools available, but it has a few difficulties. While the prototypes allow her
to greatly reduce the complexity of the search, a system to choose the closest
prototype grasp is not given. Thus, the computed grasps are unlikely to be
perfect for a given task or object. Modeling the TWS with a unit sphere
has no physical interpretation. The forces along with their corresponding
torques act on the object boundary in order to accomplish a task. Thus, the
task wrench space is not uniform and varies with the object shape. Pollard
introduced the Object Wrench Space (OWS) which incorporates the object
geometry into the grasp evaluation. The OWS contains any wrench that can
be created by disturbance forces acting anywhere on the object surface. It
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is a physically motivated description that takes all possible disturbances on
the object into account permitting to generalize over any task.

Borst et al. combined the idea of the task ellipsoid [36] with the concept
of the OWS to obtain a new description of the task wrench space (TWS).
The quality of a grasp is obtained by comparing the TWS (which is no longer
a sphere) with the Grasp wrench space, GWS, of the grasp that is actually
evaluated. In other words, for a given TWS, the largest scaling factor is
searched to fit it into a GWS (figure 4). In order to reduce the computation
complexity, the authors approximate the OWS with a 6D ellipsoid which en-
ables them afterwards to transform the problem to a sphere fitting into the
GWS using a linear transformation.

Figure 4: Approximating the OWS with an ellipsoid. 1. The sampled OWS. 2. Convex
Hull over the sampled OWS. 3. Enclosing ellipsoid. 4. Linear transformation of ellipsoid
and GWS [11].

The authors in [30] proposed a method for computing a task oriented
quality measure. The approach is based on a linear matrix inequality for-
malism, treating friction cone constraints without the pyramidal approxima-
tion. It evaluates the grasp for a given task wrench along a single direction
and specifies the largest applicable wrench along this direction. Thus, it al-
lows optimization of the maximal applicable wrench for a given task wrench
direction. Instead of finding a grasp and evaluating its suitability for the de-
sired task, the authors in [57] proposed an approach that takes the task into
account from the early grasp planning stages using hand-preshapes. They de-
fined four hand preshapes along with an approximation of their grasp wrench
space (figure 5). The hook power preshape is adapted for grasping handles
and pushing along a known direction. The hook precision has the same pre-
shape as the hook power one but the contact is made with fingertips. The
precision preshape permit forces to be exerted along the two senses of a same
direction which enables turning a tap for example. In cylindrical preshape,
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the fingers enclose the object and make force towards the palm. Thus, to ac-
complish a task, a robot has to align the appropriate hand’s task frame with
a target frame that is selected during task planning. The hand preshape and
its corresponding target frame are selected according to the task direction
and a simplified model of the manipulated object. Objects are modeled as
hierarchy of boxes. This algorithm was tested for accomplishing a common
task, turning a door handle.

Figure 5: Task frames for the hook power (top-left), hook precision (top-right), precision
(bottom-left) and cylindrical (bottom-right) preshapes [57].

The task wrench space (TWS) models wrenches applied on the grasped
object in order to perform a task. Given an object and a task to be exe-
cuted, Li and Sastry proposed to represent the TWS as a six-dimensional
ellipsoid. The latter conforms well the task but it is difficult to obtain. The
authors were conducted to pre-compute the trajectory followed by the object
to accomplish the task. Obviously, this approach is not appropriate for new
tasks nor for new objects, the whole computation procedure will be repeated.
Pollard models the TWS with a six-dimensional unit sphere. Thus, it is as-
sumed that the probability for every wrench direction to occur is equal. This
representation has no physical interpretation since wrenches occurring at an
object boundary are not uniform. Consequently, the TWS is not uniform
as well. Borst approximates the OWS with an ellipsoid in order to model
the TWS. This representation takes into account the object geometry and
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the wrenches it may encounter. But since this representation accounts for
different wrenches on the whole object boundary, it does not consider task
specific information. Thus, the computed grasp is not the best adapted to a
specific task. Haschke optimizes the maximal applicable wrench for a given
task wrench direction. However, the paper does not include any information
about the corresponding task wrench direction computation. Prats’ approach
is adapted for tasks occurring along a specific direction such as opening a
door or a drawer where it is easy to model objects with boxes in order to
determine their corresponding target frame. Such approach fails to associate
appropriate hand preshapes to more complex tasks.

3.3. Discussion on Analytical Approaches

The analytical methods described in the previous sections concentrate
on the analysis of a particular grasp or the development of force-closure
or task-oriented criteria to compare grasps. The size of the grasp solution
space is the most difficult obstacle to overcome in optimizing the grasp. The
presented criteria to compute force-closure grasps may yield optimal stable
grasps adapted for pick and place operations (figure 1). However, physical
interaction through manipulation in our daily life, even for simple and com-
mon tasks, goes beyond grasping for picking and placing. That’s why many
researchers addressed the problem of task-oriented grasping.

The goal of task-oriented grasp planning is to solve the following problem:
given an object and a task, how to grasp the object to efficiently perform the
task? Two main keypoints are encountered when addressing this issue:

• The difficulty of modeling a task.

• The computational effort to find a grasp suitable for the corresponding
task.

Different task-oriented criteria were introduced in the literature. Some
of the presented algorithms consider that a set of grasps has already been
found, and evaluate the suitability of the given grasp for the desired task
using these criteria. In practice, lots of grasps would have to be generated
and evaluated, making these approaches computationally unaffordable. They
often are not adapted neither for new tasks nor for new objects.
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In order to avoid the computational complexity of analytical approaches,
empirical techniques were introduced to the grasping problem. By taking a
further look at the diagrams of figure 3 and figure 6, we notice that most re-
cent works are based on empirical approaches. These techniques are detailed
in the next paragraph.

4. Empirical Approaches

By empirical grasping approaches, we refer to the techniques based on
classification and learning methods that avoid the computational complex-
ity of analytical ones. Figure 6 summarizes the proposed algorithms in the
literature. As shown in this figure, we can distinguish two broad categories:
the techniques centered on the observation of a human performing the grasp
and those focused on the observation of the grasped object.
In the first techniques, a robotic system observes a human operator, called
also teacher or expert, performing a task and tries then to reproduce the
same grasps. Such techniques represent a subset of policy learning methods
and are known as Learning by (or from) Demonstration (LbD).
The second techniques are object centered methods. The robotic system
learns the association between objects characteristics and different hand
shapes in order to compute natural and task adapted grasps.

The general strategy adopted by the empirical approaches to compute
grasps is illustrated in Figure 7. Some algorithms proposed in the literature
do not meet all points of this architecture but are limited to a subpart while
others incorporate the evaluation step, for example, to obtain a loop and
to give the teacher an active role during learning. In fact, learning systems
could be augmented to enable learner performance to improve beyond what
was provided in the demonstration dataset. In the following, we detail the
two introduced techniques: human and object centered methods.

4.1. Systems based on human observation

Different Learning-by-Demonstration (LbD) frameworks, where the robot
observes the human performing a task and is afterwards able to perform the
task itself were proposed in the literature. Regarding a categorization for
these approaches, we note that many legitimate criteria could be used to
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Figure 6: A synthetic view of existing empirical approaches for grasp synthesis of 3D
objects.

subdivide LbD research. For example, one proposed categorization consid-
ers the questions who, what and how to imitate [8, 62]. Another provides
a categorical structure for LbD approaches and presents the specifics of im-
plementation [5]. Readers may find other surveys on the LbD research. In
particular, the book edited by Dautenhahn and Nehaniv [48] produces a
reference suitable as an introduction to the state of the art work on imi-
tation across disciplines (psychology, linguistics, neuroscience and computer
science).

From our point of view and as illustrated in figure 7, sensors and signal
processing are key points in the proposed techniques. Some researchers use
datagloves, map human hand to artificial hand workspace and learn the dif-
ferent joint angles [28, 20], hand preshapes [34] or the corresponding task
wrench space [3] in order to perform a grasp. Others use stereoscopy to
track the demonstrator’s hand performing a grasp [32] or try to recognize its
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Figure 7: Strategy of grasp synthesis using empirical approaches.

hand shape from a database of grasp images [58]. Moreover, mirror neurons
that fire not only when grasping but also when observing an action were
also introduced to the grasping problem [51]. Our LbD review aims to focus
on the specifics of used sensors. The extracted features from sensors, used
as inputs for learning, are crucial for learning policy and for the choice of
the demonstration technique (the strategy for providing data to the learner).
The following two paragraphs present respectively techniques using dataglove
and vision systems. Finally, other human centered approaches incorporate
object descriptors. This is the topic of the last paragraph of this section.

4.1.1. Magnetic tracker and dataglove based descriptors

A dataglove is used to control a four-finger anthropomorphic robot hand
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in [28]. In order to measure the fingertip positions of an operator wearing a
dataglove, the fingertips were marked with round colored pins. A calibrated
stereo camera setup was used to track the four color markers in real time.
To be able to accurately use the dataglove a nonlinear learning calibration
using a neural network technique was implemented. Based on the dataglove
calibration, a mapping for human and artificial hand workspace can be re-
alized enabling an operator to intuitively and easily telemanipulate objects
with the artificial hand. A similar framework is proposed in [20]. The human
and the robot are both standing in front of a table, on which a set of objects
are placed. The human demonstrates a task to the robot by moving objects
on the table. The robot is then able to reproduce the task performed by the
human, using magnetic trackers and Hidden Markov Models (HMM). Since
objects may not be placed at the same location as during the demonstration,
more recently [21], the authors addressed the problem of grasp generation and
planning when the exact pose of the object is not available. Thus a method
for learning and evaluating the grasp approach vector was proposed so that
it can be used in the above scenario. Aleotti and Caselli [3] also proposed
a method for programming task-oriented grasps by means of user-supplied
demonstrations. The procedure is based on the generation of a functional
wrench space which is built by demonstration and interactive teaching. The
idea is to let an expert user demonstrate a set of task-appropriate example
grasps on a given target object, and to generate the associated functional
wrench space as the convex union of the single wrenches. The grasp eval-
uation is obtained by computing a quality metric Q, defined as the largest
factor by which the grasp wrench space (GWS) of the grasp to be evaluated
can be scaled to fit in the demonstrated functional wrench space (FWS).
Functional wrench space Grasp demonstration is performed in virtual reality
by exploiting a haptic interface including a dataglove and a motion tracker
for sensing the configuration of human hand [2].

Although magnetic trackers and datagloves deliver exact values of hand
joints, it is desirable from a usability point of view that the user demonstrates
tasks to the robot as naturally as possible; the use of gloves or other types
of sensors may prevent a natural grasp. This motivates the use of systems
with visual input.
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4.1.2. Vision based descriptors

The authors in [32] proposed a vision and audio based approach. The
user demonstrates a grasping skill. The robot stereoscopically tracks the
demonstrator’s hand several times to collect sufficient data. The accuracy of
the visual tracking is limited by the camera’s resolution and the quality of
the calibration procedure. Additionally, every time a grasp is demonstrated,
the user performs it differently. To compensate for these inaccuracies, the
measured trajectories are used to train a Self-Organizing-Map (SOM). The
SOMs give a spatial description of the collected data and serve as data struc-
tures for a reinforcement learning algorithm which optimizes trajectories for
use by the robot. The authors, in [33], applied a second learning stage to
the SOM, the Q-Learning algorithm. This stage accounts for changes in the
robot’s environment and makes the learned grasping skill adaptive to new
workspace configurations.

Another vision based Programming by Demonstration (PbD) system is
proposed in [58]. The system consists of three main parts: The human grasp
classification, the extraction of hand position relative to the grasped object,
and finally the compilation of a robot grasp strategy. The hand shape is
classified as one of six grasp classes, labelled according to Cutkosky’s grasp
taxonomy [15]. Instead of 3D tracking of the demonstrator hand over time,
the input data consists of a single image and the hand shape is classified
as one of the six grasps by finding similar hand shapes in a large database
of grasp images. From the database, the hand orientation is also estimated.
The recognized grasp is then mapped to one of three predefined Barrett hand
grasps. Depending on the type of robot grasp, a precomputed grasp strategy
is selected. The strategy is further parameterized by the orientation of the
hand relative to the object.

These approaches enable object telemanipulation or grasp type recogni-
tion. However, their learning data is based on the hand observation, i.e.
the joint angles, the hand trajectory or the hand shape. Thus the learning
algorithm does not take into consideration the manipulated object proper-
ties. Consequently, these methods are not adapted to grasping previously
unknown objects.
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4.1.3. Biologically oriented learning and object feature extraction

Oztop and Arbib [51] propose a grasping strategy based on mirror neu-
rons. The latter were identified within a monkey’s premotor area F5 and they
fire not only when the monkey performs a certain class of actions but also
when the monkey observes another monkey (or the experimenter) performing
a similar action. It has been argued that these neurons are crucial for under-
standing of actions by others. In a grasping context, the role of the mirror
system may be seen as a generalization from one’s own hand to another hand.
Thus, in a biologically motivated perspective, the authors propose a very de-
tailed model of the functioning of these neurons in grasp learning. They
present a hand-object state association schema that combines the hand re-
lated information as well as the object information available. This method is
capable of grasp recognition and execution (pinch, precision or power grasp)
of simple geometric object models. The only object features used are the
object size and location.

A grasping task could be also described as a succession of ”action units”.
Such movement primitives, proposed in [4, 66], are sequences of actions that
accomplish a complete goal-directed behavior. Nevertheless, as discussed
in [48], such low-level representations do not scale well to learning in systems
with many dofs. It is useful for a motion primitive to code complete temporal
behaviors [16].

Kyota et al. [34] proposed a method for detection and evaluation of grasp-
ing positions. Their technique detects appropriate portions to be grasped on
the surface of a 3D object and then solves the problem of generating the
grasping postures. Thus, points are generated at random locations on the
whole surface of the object. At each point, the cylinder-likeness, that is the
similarity with the surface of a cylinder, is computed. Then, the detected
cylindrical points are evaluated to determine whether they are in a graspable
portion or not. Once the graspable portions are identified, candidate hand
shapes are generated using a neural network, which is trained using a data
glove. Grasps are then evaluated using the standard wrench space stability
criterion. Figure 8 shows several solutions for grasping a frying pan with
different hand shapes.
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Figure 8: Grasping postures for a frying pan [34].

Oztop and Arbib’s approach can determine the grasp type of simple geo-
metric objects. When facing new objects, it will roughly estimate their sizes
and locations in order to identify the corresponding hand parameters and
thus the grasp type in order to pick them up. Kyota’s method finds different
possible grasping regions on the object surface. However, it does not take
into account object usage. Thus, these approaches can find stable grasps for
pick and place operations but are unable to determine a suitable grasp for
object manipulation.

4.2. Systems based on the object observation

Some authors consider that hand motion has a variety of expressions (or
configurations) with its high degrees of freedom. It is then roughly divided
into gesture type and functional one. Patterns in gesture type motion have
advantages to be reused in the generation of new movement. While a func-
tional motion varies depending on the target objects’ features such as sizes
and shapes [69].

Grasping strategies based on the object observation analyze its properties
and learn to associate them with different grasps. Some approaches associate
grasp parameters or hand shapes to object geometric features in order to find
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good grasps in terms of stability [52, 38]. Other techniques learn to identify
grasping regions in an object image [61, 64]. These techniques are discussed
in the following.

Pelossof et al. [52] used support vector machines to build a regression map-
ping between object shape, grasp parameters and grasp quality (Figure 9).
Once trained, this regression mapping can be used efficiently to estimate the
grasping parameters that obtain the highest grasp quality for a new query set
of shape parameters. The authors use simple object representation in their
learning algorithm, such as spheres, cylinders etc. Since the grasp quality
metric used, determines the magnitude of the largest worst-case disturbance
wrench that can be resisted by a grasp of unit strength [26], the optimal
grasps computed by the algorithm are ”good” stable grasps adapted for pick
and place operations.

Figure 9: The GraspIt! simulator allows to import a robot hand model (here a Barrett
hand) and an object model. (a) This image shows one successful grasp of the object. (b)
and (c) For each object in the training set, 1600 grasp starting poses are generated and
evaluated [52].

A learning approach for robotic grasping of novel objects is also presented
by Saxena et al. [61]. Based on the idea that there are certain visual features
that indicate ”good” grasps, and that remain consistent across many differ-
ent objects (such as coffee mugs handles or long objects such as pens that can
be grasped at their mid-point), a learning approach that uses these visual
features was proposed to predict ”good” grasping points. The approach is
based on training a logistic regression model on annotated synthetic images,
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combining a 2D filter responses with 3D range data in a dense, multi-scale
image representation. The algorithm predicts a grasping point as a function
of 2D images. The supervised learning is used to identify images patches
that contain grasping points. The method starts by dividing the image into
small rectangular patches. For each patch, it computes local image features
and predict if it is a projection of a grasping point onto the image plane.
The chosen features represent three types of local cues: edges, textures, and
color. Thus given two (or more) images of an object, the algorithm identify
a few points in each image corresponding to ”good” grasp locations of the
object. This set of points is then triangulated to obtain a 3D location of the
grasp.

In a similar approach, Stark et al. [64] developed a functional approach to
affordance learning in which subcategories of the graspable affordance (such
as handle-graspable and sidewall-graspable) are learned by observation of
human-object interactions. Interaction with specific object parts leads to
the development of detectors for specific affordance cues (such as handles).
An object is represented by a composition of prehensile parts. The affordance
cues are obtained by observing the interaction of a person with a specific ob-
ject. The authors determine the interaction region as the set of object pixels
that has been occluded by the human tutor in the course of an interaction.
Affordance cues representation is based on geometric features extracted from
a local neighborhood around that region. Grasp hypotheses for new stimuli
are inferred by matching features of that object against a codebook of learnt
affordance cues that are stored along with relative object position and scale.
An extension of this approach, where the global shape of the object is used
instead of local appearance, was proposed in [9].

Figure 10: Matching contact points on the hand/object and contact normals on the object
surface [38].
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When a complete 3D model of the object is available, Li and Pollard [38]
treated grasping as a shape matching problem. Based on the idea that many
grasps have similar hand shapes, they construct a database of grasp exam-
ples. Thus, given a model of a new object to be grasped, shape features of
the object are compared to shape features of hand poses in the database in
order to identify candidate grasps. These shape features capture information
about the relative configurations of contact positions and contact normals in
the grasp. Figure 10 shows contact points and normals on the hand and on
the object. Note that the inside surface of the hand contains a great deal of
information about the shape of the mouse. If similar features can be found
on a new object, it may be possible to use the same grasp for the new object.
After shape matching, a number of grasps is obtained. Some of these grasps
may be inappropriate to the task. They may fail to support the object se-
curely or the main power of the grasp may be aligned in the wrong direction
for the task. Thus, the authors used a grasp quality that takes into account
both the hand and the task requirements to evaluate the computed grasps.
By applying such a grasp quality measure, many grasps are pruned. Even
though, the authors stated that the user should select manually the desired
grasp from among the possibilities presented by the system because some of
the grasps are unintuitive. Thus a fully autonomous system that generates
natural grasps should take into account aspects other than ability to apply
forces.

El-Khoury et al. [22, 59] consider the problem of grasping unknown ob-
jects in the same manner as humans. Based on the idea that the human
brain represents objects as volumetric primitives in order to recognize them,
the proposed algorithm predicts grasp as a function of the object’s parts as-
sembly. Beginning with a complete 3D model of the object, a segmentation
step decomposes it into single parts. Each single part is fitted with a simple
geometric model. A learning step is then employed to find the object compo-
nent that humans choose to grasp this object with. Figure 11 shows several
grasps obtained using DLR hand model and GraspIT simulator on different
object graspable parts.

All these approaches learn to use object features in order to compute a
corresponding grasp. Thus, they are capable to generalize to new objects.
But what kind of grasps these techniques ensure? Pelossof’s strategy can
predict the quality of a grasp according to a stability criterion. Saxena’s
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Figure 11: Generating 4-finger force closure grasps using DLR hand model Graspit Simu-
lator in [24].

approach finds grasping points on mugs handles or on elongated object mid-
points. Such contact points are adapted to some objects in terms of task-
compatibility but when this approach encounters elongated objects such as
screw-drivers or bottles, it will also identify a grasping region situated at
these objects middles. Such grasps are not necessarily adapted to such kinds
of objects. Stark’s grasping strategy can only distinguish between two object
classes: handle-graspable (adapted for mugs) and side-graspable (adapted for
bottles). This method does not take into account the variety of object shapes
and thus the variety of possible grasps. Li and Pollard’s strategy determine
for one object different grasps and fail to choose the one adapted to the
task-requirements. El-Khoury et al. [24] proposed to imitate humans choice
of unknown object graspable components based on primitives such as object
sub-parts shapes and sizes. But does the selected graspable part convey
any information about the object corresponding task? In the following, we
discuss in details the limitations of the empirical approaches.

4.3. Discussion on Empirical Approaches

The main difficulty of analytical task-oriented approaches was task mod-
eling. Empirical approaches based on a human demonstration can overcome
this difficulty by learning the task. For such approaches, when given an
object and a task, the teacher shows how the grasp should be exactly per-
formed. The robot is able afterwards to perform the task for the given object
by itself. However, these systems are not fully autonomous when they face
a new object or a new task. To overcome this problem, rather than trying
to reproduce human grasping gestures, researchers developed systems that
focus on object observations. These approaches learn to find good grasping
region in an object image or associate object local features to different hand

26



shapes. These systems can generalize to new objects but they find either
stable grasps or generate for one object different grasps and fail to select
automatically the one that best suits the task.

This selection is done manually or use a task-oriented quality criterion
which is complicated to compute. Thus, much research remains to be done
to better understand human grasping and to develop algorithms that achieve
natural grasps.

5. Conclusion

Autonomous grasping strategies aim to achieve stability and task compat-
ibility when grasping new objects. In the literature, grasp synthesis, has been
tackled with two different approaches: analytical or empirical. By review-
ing these works, we may conclude that force-closure analytical approaches
find stable but not task-oriented grasps. Task-oriented analytical approaches
suffer from the computational complexity of the task requirement modeling.
Empirical systems based on the observation of humans overcome task model-
ing difficulty by imitating human grasping gestures. However, these systems
are not fully autonomous when they face new objects. Empirical systems
based on object observations are adapted to new objects but generate a lot
of possible grasping positions and fail to select the one that best suits the
task. When trying to do this autonomously, they encounter the same prob-
lem of analytical task-oriented methods, which is task modeling.

Thus, what grasping strategy is able to ensure stability, task compatibility
and adaptability to new objects? Adaptability to new objects is ensured by
learning object characteristics that are relevant to grasping. Stability can
be obtained by computing force-closure grasps. In order to deal with the
task requirements, on one hand, modeling the task is difficult; analytical
approaches fail to find a general mathematical formulation compatible with
different tasks. On the other hand, learning specific task/hand performance
works only on a particular object to perform a particular task. Finding a task
compatible grasp for a new object is still an open problem. A possible solution
may be to learn tasks/features mapping, i.e. learn to identify object features
that are immediately related to the object corresponding task. Thus, when
a robot encounters a new object, it will be able to autonomously identify
relevant features and consequently identify the object corresponding task.
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Politècnica de Catalunya, Institut d’Organització i Control de Sistemes
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