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ABSTRACT
In robot Programming by Demonstration (PbD), the inter-
action with the human user is key to collecting good demon-
strations, learning and finally achieving a good task execu-
tion. We therefore take a dual approach in analyzing demon-
stration data. First we automatically determine task con-
straints that can be used in the learning phase. Specifically
we determine the frame of reference to be used in each part
of the task, the important variables for each axis and a stiff-
ness modulation factor. Additionally for bi-manual tasks
we determine arm-dominance and spatial or force coordina-
tion patterns between the arms. Second we analyze human
behavior during demonstration in order to determine how
skilled the human user is and what kind of feedback is pre-
ferred during the learning interaction. We test this approach
on complex tasks requiring sequences of actions, bi-manual
or arm-hand coordination and contact on each end effector.

Categories and Subject Descriptors
I.2.9 [Robotics]; I.2.6 [Learning]: Knowledge acquisition

Keywords
Programming by demonstration; Task constraints extraction

1. INTRODUCTION
Most common daily tasks such as mixing in a bowl or

scooping ice cream require several atomic actions, each with
its own set of features. For example the bowl has to be
approached in a certain way, and a given force needs to be
applied while mixing. For a robot it is important to extract
this information for learning the task. Moreover in order to
generalize the task, the motion and force profiles need to be
related to the object of interest for that particular action.

However from a user perspective, this information is im-
plicit. Therefore while demonstrating a task to a robot mul-
tiple times the users involuntarily maintain the key features
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unchanged while introducing variability in all the other as-
pects. Starting from this assumption we developed an ap-
proach for extracting task constraints. Further we use these
constraints to evaluate skill across demonstrators. How-
ever when humans teach a robot kinesthetically their per-
formance might change. Therefore in order to improve the
teaching interaction we explore ways of providing feedback
to make the learning process transparent to the user.

2. RELATED WORK
From a robot learning perspective we focus on extract-

ing artificial constraints [7] that are key for properly exe-
cuting complex tasks. Typically this requires segmenting
the demonstration data into meaningful subactions [5], each
with a corresponding set of constraints. Prior work focuses
on the extraction of the frame of reference with respect to a
given metric of imitation [3]. In our work we determine an
attractor frame with respect to the extracted frame of refer-
ence, in which we can perform orthogonal decomposition of
force and position control. Additionally we learn a stiffness
modulation and a corresponding force profile.

From a user perspective, having a human in the loop re-
quires first measures of what makes a good demonstration
[2]; and second a social component that makes the teach-
ing interaction a dual process and allows the improvement
of both the robot and the user [4] by maintaining a mental
model of the way the learning procedure is advancing [1].

3. APPROACH
We consider tasks that require completing several actions,

such as the ones in Figure 1. We record a set of kinesthetic
demonstrations. In the case of uni-manual tasks recorded
data consist of robot proprioceptive information of end effec-
tor pose and wrench. When performing bi-manual demon-
strations we use a data glove equipped with Tekscan tactile
sensors, and a force-torque sensor mounted on the tool. This
allows us to study the motion of both arms while providing
additional information about the grasp being used.

3.1 Bootstrapping information for learning
We develop a criterion based on the assumption that the

regions in the demonstration data where the user was co-
herent represent the features of the task that should be
reproduced. This criterion allows us to compare different
measures (like position and force) and modulate their con-
tribution to the controller used in reproducing the motion,
by using a weighting factor that adapts the robot’s stiffness.
We determine the suitable reference frame by weighting the
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(a) Holding a cup (b) Grating vegetables (c) Mixing in a bowl (d) Scooping a mellon

Figure 1: Task constraints and user behavior were studied across different tasks that require completing several actions. In the scooping task
illustrated in figure (d) these actions consist in: reaching for the mellon, scooping, reaching a bowl and emptying the scoop, reaching back.

relative importance of each of the task variables when ex-
pressed in the reference system of the objects involved in the
task. A set of segmentation points are obtained by splitting
the motion whenever a change in the reference frame or in
the variables on interest occurs.

This information bootstrapped prior to learning a task is
aimed to parameterize the learned models by automatically
encoding features that are important in the execution. We
encode the motion of each segment in a time independent
manner using a Coupled Dynamical Systems approach [6].
We encode the force and stiffness profiles as a function of
position using gaussian mixture models. The approach was
validated on a common kitchen task of grating vegetables
(see Figure 1(b)), and performance was compared against
standard control modes.

3.2 Human factors in PbD
We assessed human factors influencing demonstrations with

the underlying motivations of (1) understanding what keeps
the user engaged throughout the demonstrations; (2) mak-
ing the robot responsive to user actions in a way that would
increase user engagement; and (3) maximizing the use of
demonstrated data.

For this we conducted a user study in which the partici-
pants had to teach a robot a manipulation task (see Figure
1(a). Kinesthetic teaching was used to demonstrate a robot
how to adapt its finger positions when faced with perturba-
tions, without dropping the object. Recorded data consisted
of finger joint angles and the response of tactile sensors on
the robot’s fingertips. First we evaluated the teaching pro-
cedure with regard to task specific metrics (i.e. showed how
good the robot’s response was when the object’s position was
perturbed). Second we evaluated the human performance in
four different conditions: the robot provided no feedback at
all; a GUI feedback of the tactile response was provided on a
screen; verbal feedback by a knowledgable person; and direct
feedback by the robot through the use of facial expressions
mapped to the intensity of the contact. Results showed that
the last two setups improved the teaching, while the last one
reduced user fatigue.

3.3 Consistent user behavior in bimanual tasks
Ongoing work focuses on asymmetrical bi-manual tasks,

as seen in Figures 1(c) and (d). We extend the approach
described in Section 3.1 to determine arm dominance. This
has an impact on the way the task is encoded as typically
the passive arm follows the active arm and therefore the
motion is relative to its reference frame. Second we assess
how coordination occurs between arms, between each arm
and hand and between the fingers of the hand. For this

we study the causality structure in the demonstration data.
This allows us to understand what determines a change in
the task flow and to retain the important set of variables.

For evaluating user performance during the demonstra-
tion we make the assumption that the extracted uni-manual
and bi-manual constraints remain invariant across demon-
strators for the same task. However while the motion of the
two arms in the scooping task should be coordinated, still
during demonstration multiple instances of decoupling may
occur. Similarly a user might use a grasp that is suitable for
the task (i.e. for applying a force or a torque in a certain
direction), or might show a different level of coordination
between the fingers and the hand while switching between
grasps. Therefore users’ skill can be evaluated based on
these metrics to determine a preferred demonstrator.

4. CONCLUSIONS
We proposed an approach for automatically extracting

task constraints from uni-manual and bi-manual tasks. This
represents a bootstrapping process that precedes learning a
task model, and consists of determining features of the task
that should be encoded. From a control point of view we use
a hybrid impedance controller throughout the task. We ex-
tract the constraints from variables that can be directly used
for control. Current work focuses on applying this approach
to bi-manual tasks, and using the extracted constraints as
a metric that would help the robot evaluate the skill of the
user and therefore choose a preferred demonstrator.
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