1 Introduction

Another alternative to find the number of clusters, K, is to use the eigenvalues given by Laplacian Eigenmaps. Indeed, or the similarity graph is not fully connected and so the multiplicity of the eigenvalue $\lambda = 0$ gives us an estimation of K, or looking at the smallest eigenvalues we can have this estimation (keeping number of eigenvalues which are almost zero). In a first part of the tutorial, we will look into the following:

- Evaluate Laplacian Eigenmaps as means of deducing the number of clusters present in a dataset.
- Compare Laplacian Eigenmaps with kPCA solution seen yesterday on the same dataset.

Another difficulty is that the structure of the data can be a manifold and so applying clustering methods to the data can lead to get clusters which are not representative of this structure. Here is another point where dimensionality reduction techniques are useful since they enable to obtain in a low-dimension space a projection of the data with possibly a linear separation between the different clusters. Applying simple clustering algorithm, like k-means, can at this moment be used to find the clusters. In a second part, we will so look into:

- Dimensionality Reduction Technique as means of discovering manifolds in data.
- Apply clustering algorithm to find clusters.
- Evaluation of the performance after different projections using F-measure for semi-supervised clustering.
2 ML_toolbox

ML_toolbox contains a set of matlab methods and examples for learning about machine learning methods. You can download ML_toolbox from here: [link] and the matlab scripts for this tutorial from here [link]. The matlab scripts will make use of the toolbox.

Before proceeding make sure that all the sub-directories of the ML_toolbox including the files in TP2 have been added to your matlab search path. This can be done as follows in the matlab command window:

```matlab
>> addpath(genpath('path_to_ML_toolbox'))
>> addpath(genpath('path_to_TP2'))
```

To test that all is working properly you can try out some examples of the toolbox; look in the examples sub-directory.

3 Laplacian Eigenmaps to determine the number of clusters

3.1 Laplacian Eigenmaps

The Laplacian Eigenmaps is a non-linear projection technique which is based on the eigenvalue decomposition of a scaled similarity matrix $L = D - S$. If we perform an eigenvalue decomposition of this matrix $L = V \Lambda V^T$, where $V \in (N \times N)$ are the eigenvectors α and $\Lambda \in (N \times N)$ is a diagonal matrix containing the eigenvalues, we can then order the eigenvalues by increasing order: $\lambda_1 = 0 \leq \lambda_2 \leq \ldots \leq \lambda_N$, where N is the number of datapoints. Looking at the multiplicity of eigenvalue 0 or more generally at the eigenvalues which are almost 0 provides information about the partitioning of the similarity graph built on the data and so indication about the number of clusters we could find.

3.2 Questions

Your task is to find the number of clusters present in the following datasets:

- **Circles**: 2D data set of non linearly separable clusters.
- **High-dimensional clusters**: 10D synthetically generated data.
- **Breast-cancer-Wisconsin**: Medical dataset taken from the UCI database.
- **House-votes**: Voting patterns between republicans and democrats, also UCI database.
- **Digits**: 8×8 digit images.

You will be compare the use of Laplacian Eigenmaps to techniques of previous practicals in order to find the number of clusters K.

3.2.1 Circle clusters

Open **TP2_Laplacian_kPCA_comparison.m** and you will find a detailed descriptions in the script of the steps you should take. You first generate a data set of circles or
spheres depending on the dimension you choose for the original data Figure 1(a). Then you run successively kPCA and Laplacian Eigenmaps (with a chosen kernel width, neighborhood for Laplacian Eigenmaps and number of eigenvectors to retain). The result of the projection with Laplacian Eigenmaps is illustrated in Figure 1(b).

Q: How many clusters did you find with Laplacian Eigenmaps? Is it sensitive to hyper-parameters?

Q: How many clusters had you found with kPCA, with AIC and BIC with k-means?

3.2.2 Datasets clusters

You will be trying to do the same now for the following three real datasets: (1) Breast-cancer-Wisconsin, (2) House-votes, (3) Digits.

How many clusters did you find with Laplacian Eigenmaps?

Compare with the result given by AIC, BIC and kPCA

4 Projection techniques for clustering

4.1 Using projection techniques to cluster data

We will study how projection techniques can be used to project the data so that we could apply clustering algorithm (kmeans) to find clusters. For this purpose, we will use a dataset called Swiss Roll (for the typical rolled cake) which has been sampled so that we could have two different clusters we want to find.
Figure 2: 3D view of the original dataset with two clusters.

Figure 3: (a) Projected Dataset with PCA (b) Projected Dataset with kernel PCA (c) Projected Dataset with Isomap (d) Projected Dataset with Laplacian Eigenmaps.
4.2 Tasks

Your task will be to find a good projection technique for the swiss roll example in Figure 2 in order to obtain a separation of the dataset we can easily cluster. You will compare different projection techniques for this and then apply the k-means algorithm to try clustering the data.

The projection techniques you will use are:

- PCA
- kPCA
- Isomap
- Laplacian Eigenmaps

4.2.1 Projection

Open TP2_SwissRollClusters.m which contains all the steps you will have to follow. You first generate a data set of the two-clusters Swiss roll as in Figure 2 and plot it. Then you can first run PCA and display the result and then each projection technique one after another. For kernel PCA, you have to choose the kernel and the hyper-parameters. For Isomap and Laplacian Eigenmaps you have to choose the number of neighbors used to compute the graph or put 'adaptative' to get an automatic selection. The results of each projection with good parameters is illustrated in Figure 3. Tuning the parameters of each projection technique you will have a look at how they influence the projection of the data.

Which projection enables to have a separation of the clusters?

4.2.2 Clustering

Once you will have found a good projection of the data, you will try to apply the KMeans algorithm for each projection. You can see the function implemented for each projection techniques. Try to repeat the algorithm several times on the same projection to see the effect of the random selection of centers at the beginning for some of them. At the end, there are different sections where you can estimate the F1-score for different parameters of the projections. Try to find a good range and see the influence of these hyperparameters.

Compare the average and standard deviation of the F1-score after different projections (Think about changing the hyper parameters too)

Can you explain the difference in the standard deviation observed in the F-measure between Laplacian Eigenmaps and Isomap?

Is it possible to avoid the effect of selecting randomly the initial centers for this particular case?
Try now to change the number of clusters. Can we estimate the number of clusters using the F-measure?

4.3 Datasets Clusters

You will be trying to compare the four projection techniques used before (PCA, kPCA, Laplacian Eigenmaps, Isomap) on the three real datasets: (1) Breast-cancer-Wisconsin, (2) House-votes, (3) Digits.

As before, first project the data, keep a lower dimension and then apply k-means to try finding clusters. Use the value found in the first part of the practical for K or try different numbers of clusters to see the influence of finding the good K number. Don’t forget for the comparison to change not only the hyperparameters of the projection techniques but also the number of dimensions and the components after projecting.