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Regression Algorithms in this Course
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Probabilistic Regression (PR)

PR is a statistical approach to classical linear regression that estimates the
relationship between zero-mean variables y and x by building a linear model

of the form:

y="f(xw =wx wx R"

If one assumes that the observed values of y differ from f(x) by an additive
noise e that follows a zero-mean Gaussian distribution (such an
assumption consists of putting a prior distribution over the noise), then:

y=W X 4, with e N(O, 2}

Where have we seen this before?

GGOGGEGESSEEEEESSTHESBBROL




ADVANCED MACHINE LEARNING ﬁm

Probabilistic Regression

Training set oM pairs of data poir{tx Y} F{ X Y}M

Likelihood of the regressive model

T 2
, y=w X +N( '@’) Parameters of
Yy 1a(y ){@/the model

Data points are independently and ideaty distributed (i.i.d)

p(y1X,ws) ~O B ¥ 1%, w9
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Probabilistic Regression

Training set oM pairs of data poir{tK Y} F{ X Y}M

=1
Likelihood of the regressive model

T 2
y=w X +N( 9’) Parameters of
Y y .p(y ){ the model

Hyperparameters
Given by user

Prior model on distribution of parameter w: /

1.

(W)= N(O, 8) “expip 5wl hw
¢
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Probabilistic Regression

. .y - al 1

Prior onw : p(w)= N( 0,4,) ex&—Z—V\T -\
G

Estimates conditional distribution en ivgn the data using Bayes' rt
likelihood x prior

posterior = _ — (drops , not a variable)
marginal likelihood
Posterior distribution ow
Y p(wly,X)= Py | X.w) ) is Gaussian
p(y1X) / |
2 o . 1.6
Y p(wIXy) Neerae XX+ 400, Taod +a
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Joint density of
¥and y

Gaussian distribution IS also
f_,_.-'-"‘-""‘-\‘l
e
e

w The conditional distribution of a
Gaussian (image from Wikipedia)

canditional density of
¥, QW En =X,

marginal density of y

Posterior distribution ow

\ is Gaussian.

_ _ ¥=Hy
marginal density of x

; ,oa181 . 8 . A o .]a'c’sf?
Y p(wlX)y)" NeeszesXX'+ & 6%, &aexx N
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Probabilistic Regression

The expectation over the posterior distribution gives the best estimate:

181 o1 , 5 0
E X =— XX 5 X
LPWIXY)E= S XX+ 8 9

h'd

A

This is called theg maximum a posteriori (MAP) estimate of w.
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Probabilistic Regression

p(yl)(’ X,Y): N?E% )I Al )g, ;( AL X [€
CcS
1 .
withA=— XX' + S
S
We can now compute the posterior disitibn on y .

p(y xX,y)=fp(yl xwp(w|X,y)dw

I

~ 1 Sy
O
- - & + V\-I]a O..
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Probabilistic Regression

al T A-1 T Al
p(y|Xx,X,y)=Ng— X A*Xy,xX A*x

Testing point // 1 .
2P WithA:—ZXX +'8

Training datapoints s i

The estimate of given a test poxit gisen by

1
y = E{ p(y|x}} =S—2><T A*Xy
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Probabilistic Regression

p(yIx,X,y)= Nglei2 X A Xy, X Atx

(;S
LomsiEi
T — W|thA:_2XX +\-N

Vs S

The variance gives a measure of

\ uncertainty of the prediction:
=9 | K """""""""""""" """"" 7 var{ o(y| X}} — 7 Al x
5 0 5




Gaussian Process Regression

How to extend the simple linear Bayesragressive mode
for nonlinear regression ?

y=W X +N(O,s 2)




Gaussian Process Regression

How to extend the simple linear Bayesragressive mode
for nonlinear regression?

y:WTX +N(O,52) y:WTf(X) +e ~eN(O, 2)

| > f () J




Gaussian Process Regression

How to extend the simple linear Bayesragressive mode
for nonlinear regression?

y:WTX +N(O,52) y:WTf(X) +e ~eN(O, 2)

| > f () J

Distribution over function



Gaussian Process Regression

How to extend the simple linear Bayesragressive mode
for nonlinear regression?
y=W X +N(O,s 2)

_1

p(ylx X,y)= >I A X, X A ng:s—lzxxT + &

l f(X) Non-Linear Transformation

f(>9 AH Xy, ¥ AR (Fx

Q_)o

p(y]x X,y)= N

with A=s 2

o
X
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Again, a Gaussian distribution.

p(y| % X,y):

:Nges%fw AH Xy (Y A (FX

with A=s? A X) EX) +'S

\W




Gaussian Process Regression

£(x)'s, HX)gK(X X) +$1 gy.
X)'S, £x) - (8" S (RgK(X X *5g (F . (F

See supplemel
for steps

p(ylx X,y)=

(

Define the kernel ag(x x,) =7 ( x)T S, £ x)

Inner product in feature space

p(y] % X.y) = ;i;‘ej—sz AH Xy (Y A (FX

withA=s2 {X) £X) +S

\W




Gaussian Process Regression

:E{ylx,X,y} :_E'"::laik(x

with a = K (X, X) +£1 gy

'X)

Define the kernel ag(x x,) =7 ( x)T S, £ x)

Inner product in feature space

See supplemel
for steps

p(y|x Xy)=

with A=s 2 F(

X) +1S
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Gaussian Process Regression

M
y=E{ylx Xy} A aKxx a0
i=1 e

\ _ A Al
with a = gK (X , X) +5 | 1gy/ datapoints are
used in the

computation!
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Gaussian Process Regression

M
y=E{y| x Xy} 8 a
=1

with a = K (X, X) +£1 gy

The kernel and its hyperparameters are given by the user.
These can be optimized through maximum likelihood over the
marginal likelihood, see c | a sBlesnent

T

RBF kernel, width = 0.1 RBF kernel, width = 0.5




Gaussian Process Regression

Sensitivity to the choice of kernel width (called lengthscale in most books)
when using Gaussian kernels (also called RBF or square exponential).

% q

k(x x) =e/

Kernel Width=0.1




Gaussian Process Regression

Sensitivity to the choice of kernel width (called lengthscale in most books)
when using Gaussian kernels (also called RBF or square exponential).

] |x- x°

k(x x) =e/

Kernel Width=0.5




Gaussian Process Regression

y=E{yl x Xy} %ail(XX)

Withang(X,X). 'éy
The value for the noise needs to be pre-set by hand. |
cou(p(y19)= K(x} -K(x 9B X} s 1§ K X }
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Gaussian Process Regression

Lownoise: s =0. 05
GGG S
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Gaussian Process Regression

High noise: s =0 . 2
GOGOGBGSSHSSBSSL



Gaussian Process Regression

y=E{y| % Xy} %aik(XX)

with a = @K (X, X) +&1 g

/

Kernel is usually Gaussian kernel with stationary covariance function

A Non-Stationary Covariance Functions can encapsulate local
variations in the density of the datapoints

Gi bbsd non stationar y -scaleadfundgtiamofx)e f u



