english only
EPFL > STI > IMT > LASA > Teaching > Student Projects
LASA MENU
Home
Research
Publications
Teaching
People
Arriving to LASA
Videos / Photos
Press & News

GitHub Repository
Older Source Codes
The Blog
Intranet

Prospective Students
TEACHING INDEX
Teaching
Student Projects
Former Projects
Robot Contests

Student Projects propositions for 2014 Autumn

If you are interested in one of the below projects, Semester Projects or Master Projects, please contact the first person of reference indicated in each description either by telephone, or by email, or by visiting us directly to the LASA offices. If you are looking for a project for 2015 Spring, please click here.


Semester Projects

   
   

Learning Manipulation with 4 Robotic Arms

Many industrial tasks require to have several robotic arms working on the same piece simultaneously. This is very difficuly as we want the robot to perform the task but do not intercept each other. The joint workspace of the robot is highly non-convex and cannot be expressed mathematically. This project will apply machine learning techniques to learn a representation of the feasible workspaces f 4 robotic arms. This representation will then be used in an inverse kinematic controller to control for the robot's motions at run time. The algorithm will be validated to control 4 robotic arm in the lab that must manipulate objects on a moving conveyer belt.

Project: Semester Project
Period: 01.01.2017 - 15.07.2018
Section(s): EL IN MA ME MT PH
Type:
Knowledge(s):
Subject(s): Robotics, Machine Learning
Responsible(s): Aude Billard
   

Master Projects

   
   

Learning Manipulation with 4 Robotic Arms

Many industrial tasks require to have several robotic arms working on the same piece simultaneously. This is difficult as the robot should not intercept each other while performing the task. The joint workspace of the robot is highly non-convex and cannot be expressed mathematically. This project will apply machine learning techniques to learn a representation of the feasible workspaces f 4 robotic arms. This representation will then be used in an inverse kinematic controller to control for the robot's motions at run time. The algorithm will be validated to control 4 robotic arm in the lab that must manipulate objects on a moving conveyer belt. It will also extend the approach to enable to manipulate the object under perurbations, such as when the conveyer belt slows down or accelerates rapidly.

Project: Master Project at EPFL
Period: 01.01.2017 - 15.07.2018
Section(s): EL IN MA ME MT PH
Type:
Knowledge(s):
Subject(s): Robotics, Machine Learning
Responsible(s): Aude Billard
   



Last update: 09/28/2014